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This report Is of priiary interest to research workers who have
occasion to use factor analysis techniques. Since factir analysis it
a basic research tool, the developments described in this report wi1

be of interest to research workers in personnel wnasgemant as well as

in other fields.

The technique of factor analysis is a widely used and important
research tool aimed at giving a better understanding of the UAnder-

lying abilities that personnel classification tests measure. In the

area of test construction and administration, the method of factor
analysis can be used to answer the question: How many traits, or

abilities-- or for convenience, factors-- are measured by a given

test or set of tests? Such information t used in improvrng the

effectiveness of tests and test batteries. To date, the technique of

factor analysis has been developed to produce this information for the

tests used in only one study at a time. The problem arises, then, of

comparing the factors isolated in different experimental studies to

answer the furlher question: A e he factors isolated in each of

several studies identical or different To answer such questions,1t
40has been nece"ssary to incorporate the tests from several studies into

a larger, over-all study on a representative sample of people and then

apply factorial analysis techniques. TMe difficrtties and cost of doing

this have discoixaged its being done.

it is, therefore, desirable to have a technique for waking n r

i~nedipte comparisons of factors. The present investigation, primril7

methodological in nature, is concerned with a technique that will allow

comwprison of factors when certain conditiens are met and will alzo

enable adjustent of the factors obtained in separate studies so as to

srntheaize the findings. Comutational deteils of the technique are
described, and several ntm erical excnples are. preseLted to show the

practicability of the technique.
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1. Introduction

After several factor aalyuis studies In & particular doami

have been completed, one of the ajor questions that occurs Is bo to

synthesize results from these studies. Often there are a number at

identical tests in the several batteries ewploye& in the studies. it is

hoped that these coon tests will aid In a more firm synthesis of the

studies. The problem has been how to vake use of this Identity of tests.

Ciaims have been reported in the literature that rotation to siuple

structure will yield invariance of factors. and it has been held that

the coron tests could assist in identifying cor,.sponding faStors Ia

the two studies. However, some difficulty has been encountered-in this

app roach (as has also been reported in the literature); conseuent!y, the

need for devising a more definite metbod has become clear. Tn particular,

it has been hoped that by some new r!.thod two studies which have over-

lapping tests and have been factored in accordance with L. L. hurstane's

general theories to loadings on reference axes could be separately retated

into congruence and then Jointly rotated to simple structure.

An illustration of the prcblem under attack is provided by two

etudies conducted by the Personnel Research Section of the Personnel .esearch

sad Procedures Branch, Office cf the Adjutmat General, Department of the Ar

in cooperation with representatives of the other Armed Services. O-e study

*Cb-ne aethor is indebted to a number of ataff menbers in the Departnent o?
Statistical Analysis, rducational Testirg Servicep %o Lave wrke& on
developn'nt of the mterial of this report. Deserving of special w-.ton
are Mrs. Gertrude Ditederich who os isted in. the analysi- cf the m or
orvple and Miss Angela B. Nolan -ho assistt&! in the prejn~ration of tie
ccuting directiors. Portiona of the anumicript were read by Dr. " iWliam
G. Hollenkopf and Dr. Frederic M. Lord) both of the Educational TLsting
Service Research Department, and by Miss Hlenrietta L. Calle{,er of the
De .rtment of Statistical Analysis.



Involved h3W and Navy classiflcation tests* ch wre give.n to a g at
aval Recruits after hltch a faetor analysis was performed inclu&US r@* cti

of axes to an orthogonal siple structure given in Table 1. TUB stu vwl
be called Study L The other study, which will -be called Study N, involve&

Arq, Navy, aned Air Force tests given to som Airmen and some Soldiers. A
factor analysls a ain was performied vith rotation to the ortbogowl simple

structure also given in Table 1. Ten of the variables verv cown to the

two studies as Lndicate4 by the cross references Included in the two tabl*.

Some difficulty -ms experience& in Identification of the same factors In

the two studies. These two tables will be called atrices 'and F

It i the purpose of the present iwrestigation to develop a ieans for findfta

a factor space coon between such studies as dcterIned by similarity of

factor loadings of tests comcon to the studies. .'il may be expressed orthe-

matically as attempting to discover transformtion vatrices T.A ;r

such that vhen

FarA , mA~mr A

'7jrB -JBTI

the differences between wtrices F, nad 7 am negligible for tests

overlapping the tuo studies. Tha subszripts m and hbave been used to

designate the re-ference factors in the two studies Vile r is ubed to

designate what w-_ will term congruent fact-rs . A aud B are used to

designate the studies. The nuober of conuent factors my be les than

the n=ber of fartors In either study.

-Once a zet of congruent factors have teen detar=iued,. furtber

rotation of ea-e in both studies joi'I1y within the ap~ce of the con-

gruent factors csa be acctiplished to rotated c.agruent factors. I u-

ever the corgrlPence has been establishad as of su-fi-±nt strength,

these steps shoAal facilitate across study co=jarisoin-.

-: Ifj Peport 778. Corparieon of Arxy and .avy C lification Tests. 29
Aprll9!9.
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T40TAM PAC7TR LOADUGS

matrix ,,

Test Code Nui-rbers Loading an Riotated! Eaetozin*

(Dec iml points ae OmtteL.)
8y 1 ±1 11 Lv v v& it

9 26 83 o4 01 01 08 -01
18 1 59 21 09 -01 OT -01

1 87 o6 -02 23 01 19
5 25 57 -09 01 55 2T ;I

12 28 58 O7 16 35 n1 31
1. 22 *27 09 03 144 53 35

13 52 65 10 03 27 46 27
14 31 60 04 co 10 30 08
15 35 4o 00 01 St 56 00
11 27 78 05 41 33 0. 0o
5 .. 70 16 38 26 oo -o8

10 72 15 46 1o -0m 1.
2 .. 62 22. 46 01 09. a4
6 59 45 22 09 -09 10
7 45 65 00 0 02 00
8 .. 35 80 13 05 03 08

16 .9 59 08 18 -03 03
17 52 50 10 03 *03 00

*Th.ese rotated factors wvill be meid as reference factors I:n the :o1olwing
analyslS and vill be so labeled.
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11. flesults of a Search of thet L±*erature

As the study of the literature progressed t becom apparent that

publications to date could be classified under Aw headings. lFrstp there he&

been sore controversy on ivariance of results from factorial studies. Secondj,

several problem similar or related to the onewe are studying ave been e

and solutions have been found. Wvaluation of the aterial presented in Ie

literature became guided, as more material vas covered,, by a greater precisio "

in definition of the general nature of the attack ye were oing to make on thi

solution of the problem.

A. ControverZw on Invariance of Fsctorial Results When SeveralStudies
Are Analyzed In Accordnce vithlThursone's Multirle Factor AnaVsi_

Theoryt

Thurstone has suggested (25, 26, 28) that rotation of axes In

factor analyses to simple structure rill yield invariant results for

common tactors under broad conditions of change from one study to

another. Several limiting conditions in Uhich invarlance could not be

expected were also noted. Specific changes for which Invariance van

claimed were:

1. The battlery of tects could be altered by additicu of other

variables or by deletion of variables, provie-d that:

(a) Th.e new variables did uot have loaUegs on a factor

Specifc to one of the original variables,, in vhich

case this previous specific tctor would become a now

cr 7-- fector; however, the -revious coaon factors were

invariant.

(b) The new veriabled did not have additional ccmmon factors

among themrelves, in vtich case a new comwon frctor or

factors would be add; however, the previous comon

factors were invariant.

.... ., _ '- _ " --. . t . . -_,



(c) Owe variables deleted did not eliminate one of the revious
comon factors; bwever, the other aou factors rmine..

invariant.

(Thurstone was cogniUnt of the fact that deletion of tetU

could leave the configuration of vectors such that the simple

structure was so indeterainate that the rotation of azes would

not result in the same factors. Also recognized was that additte=

of new tests could help determine a simple structure previously

indeterminate.)

2. The battery of tests could be administered to different grouj of

individuals, provided that:

(a) The groups were sufficiently similar so that the psychological

nature o2 ta-4ks involved in the tests did not cha&e.

(b) Partial special selection bad not occurred between groups on

two or more variables. In this case a new "incidentalW

covwma factor would be added, but the sivple structure would

reusin for the domon factors.

(c) Complete special selection had not occurred on one or more

variables.

(Thurstone, in this area of change, considered it permissible for

the factors to chasge in correlation and for the exact values of

the uon-vwaishing factor loadings to charge. The factor loac4ing

changes, hwever, are approximutely by a comstant of propotionality

for each factor under theoretical conditions of selec ion.)

Meyer (i) has experimntally devonstrated factorial invariance

Vhea tecta ar, deleted Trom a battery. He dealt erpicitly vith cases

in which the test aeletions left the sirmple structure indeterminate. In

one of three sll batteries formed by a selection of the teta med by

the Thurstones in a study at the eighth grade level (27), one :Cetor which

should have been present could not be identified after separate analysis

of the small battery and rotation to what appeared to be its simple

structure. Meyer used Thurtone 's correlations so that only in'Mriance

under test selection was being tested. It seers, however, that data from



Keer'b third battery a qo"pared with Lburstone0s results for a

lrger battery vould be ideal for a tryout of amr methods developed;
in the present project.

Godfrey Thoon (23), applyb% Peearon's and Aitken 'a foroulation

of effects of selection, b- pointed out that unIvarlate and multivarIati

selection affected factorial solutions. 2hurstme's analysis of the

results of these effects has been previously a std.

Cyril Burt (1) has used the correlation between iWo sets of .factor

loadings an an indication of sgreeient. R. 3, Cattell (7) called this

a "shape correlation coefficients" Willia Otehenson (22) has tied the

rank correlation coefficient in his qtechniue as a teasure of siollarii

tet£ nvole .(Eac dould be the dif~.etu in factor loadings for

. * oe tst n tw nlyss.)Cattail iie parte~larly inbereste1 in
, smilar% o profles o individuals and4 the d's wvuld be the

of pofilfr es. Cater scoresbut he su este that the cocficient

ould applied similarty of factor 1 of tests in tvo

~studies.

: " Two other sugeestions by Cattell were reved. In one (2) he

. u~ected a different . ethod for deter~ainiuK i-iation of axes than the

prinaiple of si~.le structure. flIs eu~etiou wti to he two otudieu,
I n the ca e te t in otr tU nO, but se ofsizn on the nmoume of
subjects eained that the uria lity of tha Ines ftributble to one

sipaycholo fical frctiou would idffer betwea nd. ttion bould be

guided to that ponition where butde on t tbators bth one would be

oequal between two otudiea and loangs on the one factor would be

proportional between studies .Ytheatics for aecomplish; ,,g the desire&
result were presented only for the two dimeni onal case wt no anthor

4rnil fatl tutx.M ugetoawnt netosuiu
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Ineoistlees arisng from such sources as samplIng Wrors. In
o ,.+ -+ notber article (4) Cattell used blariate frequncy couat nd

P - : , probabilities to support mtehing of factors after two studios

++.._ +.,. ba been rotated to simple strutue.

i+1 w s. Reyb rn with X. o. Taylor in 1943 (18) &M with M. J.

-ath in 1949 (19) has criticized simple structure as a basis for

rotation of axes rl factor analysis. Young and Klebol4er (29)
suggested pivoting rotations in successive studies on particular

tests by which they hoped a large body of knowledge about relations

could be built.

Points of partlcv r interest in the foregoing review of

literature on factorial invariance of simple structuro solution$

to the present project are:

1. Dione eement exists as to whether or not to expect simple strueture

factorial solutious to be invariaut.

2. St'eral indices for identity of factors in two studies have been

pat foorard. Of woat inportance to the present project aren:j(a) %lae correlation coefficient betveen lot-rgs en two factors.

(b) Cattell'a coefficient of pitterM nini3Arity.

5. Pcesithle effects of chavoge in battery aualy-ed by -cost addition or
deletieu havo been noted. Cc-,mn factors *y be a~d ed when tests

are addea or c-mon factors i-y be deleted whean teets are deleted.

A-daitiou of teats m-hLt help deternlue a si=le etrw.ture while
tnut deletion mlght levre the. atrvnie ti indterinate.

4. MffeSt or eectlon of the group c Gubjecta vae& im a tWuy can

chice the ez4-tnt of correisaioas bee,-ie~n Zactor and the relative

iwigitu e of oa.i:Ungs of the atent on the fnntozz. TA so-h 7 ext:rem

sc3ei, lacors ray be added or deleted. Mi toizl cot-3r-sition

of teist P.y chnnge when grcupa of difffercn leela of ability are
bel-! examined,



B. Solutionuto Similar or Related. Problem

Tvo particularly relevant developosts have been reported in
the literature. In one, Mosier (17) has treated the case where loadings

on a factor are assumed to be known an It Is desired to locate an
axis which has these loadings within em&L differences. A least-squares

method of fitting actual loadings to the theoretical loadings were used.

His solution resulted in the following wtrix equation:

(AA + OI)A - AO!, (11.

where A is the factor mtrix on reference factors., A is a constant
to be determinedp A is the colum vector with direction cosines of
the desired axis, and V is a column vector with the theoretical

C , loadings to be approximated. Since the labor of solution would be
great, Mosier suggeated as approximation cbtained when $ was set at
zero.

A (A'A) AT (U

This would result in direction numbers imtsid of direction cosines,
and it would be necessary to normalize the solution. Justification of
approximation can be made in either of two ways: one, that & should

be smll; and two, that the restriction that the resulting vector be
of unit length be discarded. This latter zethod of Justification
alters the problem to that of finding an axis for which the loadings

are an nearly proportional to the theoretical loadings as possible.

Equation 11.2 is a solution to this prohlm.

Harold Hotelling (13) has dealt with the situation where there
are not only several predictor variables to be cobined in a regression

equation but also several criteria whicb are to be combined so that

optimum predietion can be obtained.

Tae matrix equations are:

Z = Aa• (i

A'R A I; (1x
#,,.

A
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whre: X is the ntriz of standard scores on the crIteria,

Ana A ise a colum i-ettor of optium ve1,bte for the criteria,

Zi a eolum vector or optivany predctabi. eriterion standard
dc'ores*

R is the mtrix of predictor intercorrelatian

t the matrix of criterion intereorre]uat!fs,

"~ R Is the matrix of correlations of Vredictors with criteria,
_ is an undetermined multiplier.

Once equations 11.4 and 11.5 are solved the appropIate regression of the

i _ predictors for the criterion Z can be obtained by wevl methods where:

R being a column vector of correlations of predictors with Z. Hotelling

Fo-tes that equation 11.4 my be simplified by treatlrg the original criteria

so as to obtain a derived uncorrelateci set to be uae! in this solution. The

matrix 1_ is then the identity mtrix and my be dropped. Equation iI.4

Is then in the form for solution for princiral coaponents.

totellng's solutiou is of interest in the ccmtey.t of the present
project in that he vas matching optically two separate sets of observations.
We vll be interested in matching factor losding3 ot tests rather than

scores of individunls.

-e

I
J



111. General Conditions and Assumptions

A. AssE-ption of Thuratone's General TheoEZ of Factor Aranas

Since considerable controversy exists between several system of.

factor analysis it was relt necessary:.t liltt consideration of synthesis

of factor analysis studies to within a particular factorial system,..that
developed by L. L. Thurstone (28), Of particular importance are the

following basic assumptions made In Thurstone's theory of multiple factor

analysli."'

1. Variability of scores on a test among members 6f a
population caA be accounted for by variability of

underlying abilities amog ueaters of the popu lationj

Plus errors of observation.

2. For any particular battery of tests, some of the'.

abilities are common in that they contribute

variability to scores an several tests and some

abilities are unique to each test in the battery.
3. A linear combination of ability scores is an

adequate approximation to the actual mode of .. i

combination in producin tesat scores.

As a consequence of the choice of frwvrk it would be expected that the
othod of synthesis would e more likely to be satisfactory for studies
mdoe w bthi L Thurstone's theory. Additio(8l values might accrue if the

method o synthesis were founil to be tsabt for other factorial theories,

. but the reason~aleness of the application would have to be separately

- evaluatid.

1 Vrbi soB. offecat o the GroupmbTeeted.

one of the problems in synthesdzin factorial studies is that of
abstractind olion meaning l spite ofhe f that different groups of

aindivid Is have been used asi e tha the several tuies. Since
these sev groups are not sually selecred as unbiased samples from the

same opnlation, it seep wise s t et they y have different
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parameters such asitest and factor variances am intercorrelations. The
base groups often are composed of the people uot readily available for

testing. Soui restrictions may be Imposed* but no real attempt is made

to obtain an unbiased sample of a previously defined population. When.

several such catch-as-catch-can groups are involved, the statistics for

these groups my well differ greatly. It Is obvious that an adequate

method of synthesis must be able to cope with these inter-group differ-

ences. One restriction that must be made in order to develop a method of

synthesis Is that the base groups do not differ so widely that the

factorial pattern of tests change markedly. If performance on a particular

test is more dependent on reasoning ability for grade school children but

more dependent on perceptual speed for college students, the factor patterns

would be different and use of results for this test would be misleading

4- when attempting to synthesize the two studies. Wide differences betweeil

the groups must, consequently, be considered with skepticism.

C. Defined Restrictions.

- In the light of the foregoing discussion and the material in Appendix
" A, it seems necessary that three areas of possible restrictions be considered

I and that necessary definitions be made.

1. Since the test variances are a function of the group of people who

happen to take the tests, and the rows of the factor matrix are

affected proportionately if the units of meaurements of the tests

I are ebanged, it seems desirable to establish a ecmmon unit of

measure.ent for each test take by the several grwu,: This requires

a factor analysis of covariances rather tban of correlations. 'When

correlations are analyzed, a set oi units are implied which yield

unit varlancez for one particular up of people. When two groups

are considered with different test varlaacei, two different sets of

tesa units of measurement are necessary to yield correlations for

each of the groups. In Section Ifl of the A-ppendig A, it is shown

that a charge in test unit of measuremret results in proportionate

charnes in the factor loadings of the tests (See equation A.20).

I
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As a consequence It vill be defined throughout the present developmeut

that the factor vatrices for the several groups will have been adjusted

so that a o n unit of measurement will have been used for each test

across the several groups. Tbe method for making the adjustment for

unite of measurement is outlined below. In this outline it is assumed
that the factor analyses bae been carried out on correlations.

a. Determine for each group a desired standard deviation on

one test. These standard deviations are to be proportonal

to the raw score standard deviations on the test for the

groups. The average of the standard deviations over the

several groups is to be considered as a weighting factor for

the test indicating the importance of that test in deter-

mining the synthesis of the factor analyses. If one of the

tests is not to be relied on very heavily in synthesizing the

studies, the average standard deviation of that test can be

made low. Conversely, an important test can be given a

weight by using a larg 9verage stanaard deviation. In the

illustrative pair of studies, for ucich the factor loadings

were given in Table 1, all tests vere assigael unit average1 standard deviations. - Table 2 presents the raw score standard
deviations in the two studies for each test. For the first

test, the rav score standard deviations were 1.73 in Study A

jand 1.884 in Study B. The mean of these two standard

deviations was 1.807. The adjusted standard deviations were

obtained by dividing the raw score standard leviations by the

mean:
.I. - 1.75/.8(,

71 1.9542 1.874/1.807;

In case this test were to have a weight different from unity,

the adjusted standard deviations would have been multiplied
by this weight.

Iq



b. Multiply the factor l*sIqp for the test in the reference.

factor mtrix fbr each Igoep by the desired standard "

deviation of the test for the group. Table 3 presents

adjusted factor loadin3 for the example. Only the tests

cma on to the two atudies are included in this table. Xn

obtaining these values, the factor loadigs for each test

vere mntiplied by the carresponding adjusted standard

deviation. The loading in Table 1 for Study A test 18 were

multiplied by .9574, the correepanding adjusted standard

deviation givea in Table 2. Siilarly, the loadings in

Study B for this sam test vere multiplied by 1.029. These

steps can be stated in intrix algebra ast

F A = D JAFjA, (IU.1A

The entries in the diagonal matrices are the adjusted standard

deviations. %be subscri~t jJ is used to designate the tests

vith unit standard deviti-ons in the se parate studies and the

subscript J is used to dCignate the teats after adjustment of

the standard deviations.

c. Repeat steps a and b for each of the remining tests.

d. The resulting factor wl-rices with adjusted standard deviations

will be used in all follo.Ing steps.

2. In accordance with the resuIta of section 1 and equation A.28

of Appendix A, the variances of scores on the factors will be

permitted to very between the ft studies.

3. Since biased selection of the groups is anticipated as possible and

th. re.sults of sectl.on 4 of nppEdix A indicate for this case that

the correlations betjeen the fr.htors n=y differ for the several groups,

no restriction of similar coxrelations between factors for the several

groups will be irxposed.
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D. Synthesis of Stuftm Two at a Time.

In order to eltalify the problem to soe manageable size.

consideration wil be given only to the case in vhich there are

two studies to be synthesisedi When there are more studies then

two, it in hoped tbat complete synthesization can be accomplished

by progressive syntesis of pairs of studies.

E. Some Tests Comn o Both Batteries, Other Tests In SitherBatteryo

It will be assumed that the batteries of tests in the two factor

studies contain soe overlap tests and soe tests that appear In either

of the batteries but not in both. A test vill be considered as an

overlap test only if 1) the test has not undergone editorial changes,

2) the time limits have not 'seen changed, 3) instructions have not

been changed, 4) tAmt administration conditions are similar, and 5)

sco-ing method is the same. Synthesis of the studies will depend on

the overlap tests only.

1

4



Table 2

ADJUT TM STAMD DVATIONS

Ajusted
Test Code Numbers Pav Score Standard Deviation Sta-- ea.tl Dviation

Sti4y ~ A Stuy A Stu&y B AY!Mae S Stdy

i8 1 1.73 1.884 1.0o7 .9574 1.029
9 26 8.C& 9.487 8.764 .9174 1.0825
5 23 B.o5 8.920 8.85 .91.7 1.0513

112 28 12.59 114.92 13.666 1~6 o.934i
. 2 8.30 8.197 8.398 .,3 1.o118

13 . 6.49 6.971 6.73o .9643 1,0358
14 4 5.91 6.529 6.22o .9502 1.01.97
15 33 7.22 8.695 7.958 .9073 1.o926
U- 21 ioX6e 12.o76 1n.34.8 .9358 1-o64.2

16+17 30 25.6T- 25.o38 25.354 1.0125 .9875

-aN

N,



To'ble 3

-. DU 09 1'M= YA 0O O
VM A

Itrtx FM

?..t Code I..btr ! eo ng on Reference Factore

(Dei.1 points atted.)-
!f A Eia 9 1 1 IT v vi

Is 1 565 201 o86 -olo o67 -o o
9 26 761 07 009 009 07 -009
5 2- 009 50 256 199

32 28 526 o63 15 317 100 281
4 22 267 089 050 435 52Se 346

13 32 608 o96 029 260 44 26o2
14 3'. 57 038 000 095 285 oy6
is 33 163 000.% 009 336 5oB 000
U 2? 730 047 381s 309 C0 000

16.-T 30 528 653 104 i2 01. 017

Ihtrix -

Test Code Numbers Loadings on Reference 7aetors

(Decimal points are omitted.)

*tudjA S 1 IIr z IV V VI VII VII, Ix x XI xI

18 1 kv -o8 316 256 182 475 083 043 O6 -010 050 121
9 26 595 -W4 071 249 167 .01 -o3 265 188 -065 297 -010
5 23 9g 045 052 559 279 159 -028 198 470 M 212 043

12 28 253 _C0 1?,6 288 393 P49 010 087 483-087 .50 022
4 L-2 091 c83 W-0 622.2310W8 Qi'4 1'37 364 006 IM716

1s 32 3z3 c-A c6 609 193 28 o7 186 379 034 215 o16
3.4 3k 154 -C47 o 4 037 131 -05 616 179 023 283 -010
15 33 o3o 1.5 -o).5 86 ooB 167 -o46 1l 251 .010 189 -oi6
U 27 4io o69 114 3it o 512 Oil 164 315 092 496 094

1617 30 311 001 096 119 3 17 .3 -.O o64 178 .4W 12T -001



IV. Cmgrunce of Factor Mtric*@

A. Definition of conw m e.

Ow tem oong aoe Is used n this developent to Indicate

a lower level of precision of coinci dnce than Is associated with Its

use in gametr7. hather than moaning that an eoct fit of one matrix

to the other has be obtained, an approximate fit Is to *e indicated

by .the term. Two mtrices vil be considered as congruent if they

are generally slmilar, vith only 'relatively small random differences.

In devising an index of extent of congmuence, the concept of

being able to replace the two matrices by an average matrix In convenient.

Let tho two matrices in vhich we are Interested be the factor matrices
7 JrA and F b a. Th r average can be designated P.T, arn is obtained

by the following equation in Vhich lover case letters designate cell

entries.

fJro - (/2) (fJrA + frs ) "  (IV.1

In the index, the differences between each element of one matrix and

the corresponding element in the average atrix Is squared and these

squared differences s=ed sepsrstelr for each factor. Wis Is done for

both of the original satrices. Squares of the entries for each factor

in tbe average matrlz are then sumed. Since It is important that each

factor Is corgruent, a seporate Index of congruence, g, Is defined for

each factor aa the r-t.vo of the su of squares of dIff-orences for the

factor to twice the &-= of squares of average loadings for the factors:

6r I f
j JrC

The deanominator !a doublad so as to balarce the nutbh, of values suedI

in the numorator and the denorIator. This index mIght best be described

as a reasure of the ez-tent to which it would be sensible to replace the

factor fr the two stadiles by the average. A low value would Indicate

that this would be pcssble.

When equation IV.1 is aubstituted into equation IV1o2p It is foud. that

E (f,
j -irA f JrB 23P.

+r. TrB)



b lalex at congruence for each factor r in then tho ratlo of the mw
of square* of the dLifferences between lad ng for the" tests o the

factor in the two atuiAes and the sam of squares of the sun of losedinp

for th, t.eis on the factor in the two studes.

It Us to be notea that the closest agreement betweon factors

in the two studies, and thus maximum cigrunce, occurs when the ladex

oC congren, gr,le a minimum. A moefflioent of congruencep or, for

each factor is Zeveloped In Appendix B:

•Zf f= IJrA JrB

/('j -~rA jrB (1

The relatlo between gr and 0 was found to be

Or (B.18

1 r

The coefficient of congruence, Or, has sIxailAr properties to a cofficient

of correlatIon approaching a maximum of unit 7 for the most precise congruence

and a -wer limit of zero for the least precies congruence.

Tabt2e 4 gives the factor loadings of the overlap tests In the two

studies in the example for the six factors correspording to the six maxlea

of the coefficient of congruence. Inspection of the loadings on factor B

reveals Ponlr am11 differences between thu two studies. The coefficient of

congrTece, O., for factor B Is .999984 whle the iWidox for congruence, gr,

is .(xv-oo. High congruence also occurs for factors A, D, and S. ,The

coaguence for factor C is moderatelv high but diatinctly below that for those

noted ato7e. The congrence for factor F is definItely low so th't this

factor - 1i -et be considered as a congruent factor. The congruent Opace

between thin + -o st !.. ..... tvh-reoro definiod by the fivu factors A-F.

7"1abl' 5 gives the transformation r-atrices TrA ELAI T1r B used in

ratation fr= the reference axes of FjnA and F,, of Tabto 3 to the congruent

factors zf Tale 4 by equations B.IA. and B.lfB. The columns of theno trans-

forrat-one hare been determined so as to mnxize the coefficients of

congruence (or, it rAy be stated, to minimize the in lces of congruence).

Once the reference frame of congruent factors has been determined, Joint
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>1+-+r rotations ,ithn the. oc.niengnmt sp ae p Osibles. The rot.te. fat o - -

iti. a.. de hi* o i eivtlopent , of the solutim and Appendi C given the

Mapiaions" jroceurese

B. The Non-OM EMent Saces

In the example there is a five 4imennfiongruoaient space. StiAy A
has six factors which leaves me dimension ,oat Ineluded In the congpmnit
space. Tabl 6 gives the directiqn cosines for the dimension in this study

which t1 uorrelted with the congruqnt apace. This dimeusion constituted

the Study A non-congruent space. Study 3 has a seven dimensional non-congriont
-t + i 2space. The axes given In this space are mutually orthogonal and, as a met.,

orthogonal to the congruent space. In Seneral, it voul& '. expected that

only a portion of the space In each of a pair of studies would be congrent,

leaving a remainder of the space in each study non-congruent with the other

study. This situation can arlse from each study Involving as a common factor

some nental functlon not incluae, in the conon factor spsce of the otter

study. A second 1oseiblity is that the same factor might be iniolved In

both studies, but the overlap tests In the two studies would not include

tests adeu4iall lcade with this factor to establish the congruence.

C. ,Meaning of a.n Ose.rvea Congruence

A 'haoc aoomiption underlies the General attempt to coalesce

results from cae*al factor =nnlyaia studien. Thin ausumption is: If a

ental function is represonted by a factor in each of several etudies, the
ractor lcadin+w of the tests should be the came in these studies. The

_z L-.narilanco of factor loadings, then, bcomeo a necessary condition for

identity of fac- crs In two studies. It has beez found, howevor, to be

both reasouable ana n.ceaaary to qualify thin condition whe.n there i

i; lt'+,. of ,' p- changes:; t- IL-r uaerl7" "

differences In tet pirfornancvs vithin the grou.pI of people on which the

factorlel studlea are bac ed. Even so, tho Invarlance of factor loadings

remaina as a hasic principle. Congruent factors between two studies

sctesfy the nsc scary condition of invariance of factor loadings. These

tv o factors may z2epaesert the same mental ftnction.

0 I



Before coneludlng, hovtvor that conruent factors always-

repnsmat the oan mental function in two studies# It Is Nportant to

* ask iether factorial invarince Is a sufficient condition; The anwor

i no, invariance of factor loadings is not a suffioient condition to

Identity of mental functions. Consider, for exmmple, a test composed of

verbally stated computation problems. This test, in a comprehensive study,

ighht bave loadings on a verbal factor and a computation factor. Suppose

that thU tot is common to two emller studies and is the only overlap

test Ina the verbal and comutation domains. Suppose, further, that in

Study A there are several other verbal tests but no other ccputation

tests, ad that in Study B the reverse is true, there are other computation

tests bat no verbal tests. In Study A the common factor space wil include

the verbal factor but not the computation factor. The reverse will be true

for Stud.r B for which the common factor space viil include the computation

factor at not the verbal factor. Remember that our verbally stated

computing test had lor-dings on both of these factov.s but was the only overlap

test in t2hese domains between the two studies. In this situation it would

at;aar th&t the verbal factor of Study A vas congrueut with the computation

factor of Study B. The mental furnctions, however, would not be identical.

Whil, thIs example may seem extreme, it demonstrates the proposition that

invarlance of factor loadings for a limited set of tests is not a sufficient

condit1,na for identity of factors between two studies. A number of other

situatiaw may also lead to congr-ence of factors without identity of mental

functions.

Tse congnience of factors is, then, a necessary but not a

suff1iclent -cndtIon for IdentIty of factors between two studies. The

--- to identity of fa 4 tors) one can place on an observed conouence

of factl,- betepvn two studies depends on the extent of data on which the

congeruioe Is Vvlod. If the overlap tests in two studies are few in

number ezi oP limited variety for each mental function, very little confidence

as to idestty of factors can be placed on an observed congruence. In the

example t:he are only ten overlap tests vhile there are six connon factors

end twelve ia=on factors in the two studies, If the ten tests covered a

ten dirzrsicn:al sub-spece out of the twelve dimenrions of Study B, perfect

congruence vould be found fcr all six factors in Study A. Mathonatics



lidicater this would be neoseo.rily true., Suppose, evon, that the ten tests
le re Act identical between the two studies but were artificially matched.

Perfect identity of factor loadings still ooulA have been obtain . The

T%i: c nent factors would be artificial.,

In order to avoid this situation, in so far as possible n the

method for obtaining owgruent factors, the principal axes for the overlap

tests are found in each study separately and minor axes are .linlaated until
the dImsnaiealities are reduced somewhat below the number of overlap tests.

* IThe extent that this is possible depends on the set-up of the two studies

and choice of overlap tests. In the Illustrationp the dimensionalitles

: use&vere six and eight principal axes in the two studies. This represented-

a-. reduction for Study A and a moderate one for Study B. Artificial

cong;uence will still be a major problem in interpretation of the results.

Several rotations of axes withift the congruent space were tried

in order to find what dimensions might be more stron4SXy determined than

g4 other dimensions. Table 7 gives the resulting factor londinge. Table 8
gives the corresponding transfonrations from the reference axes. ladings

between .15 and .24 have been singly underlined, loadings of 25 or more

have been doubly underlined. Factors d and a have only on* test each with

underlines. in cons-equence very little confidence can be placed in the

I maning of the conguence of those factors between the two studies. Factors

a and b each have four tests with underlines and much more confidence can-be

placed In their congruence. Factor c occupies an intermediate position.

Aa a reult of our 3udg-ents of confidence in an observed consruence, ;oCe

I of the ob:srvzd congrMent fectors in which we havo low confidence can be

reclaosifleA to the non-bori.ent opaco. Factors d and 9 might be so

tmn.3ferred. The re iinin factors) then, constitute the space an wbich

confidence of the mean'ing of the cor gzuonco can be placed, Tpble 9 Fernta

the factor loadings of tho non-overlap tests in the two studies on factors

a, b, and c. Theae loadings and those of Lht ovre.Icap tests may be inspected

for interpretation of the two studies conWi ,ZA.

Whenever sti ong indications of identity of factors is desired by
the use of overlap tests, we nay conclude, it is nceassAry to include in the

study plans provision for an adequate nunber of overlap tests. These tests

shoald be varied ao to form while despnding on the ose factors. Several

&erallel fonts of each of a few tests will. not be an improvement over



45.

ncluding ony on form of each test. Thoe perllel formse will not ,provtd

&st*,otlve data on which to base confidenoe in an observed conruenoe.

JamIcally then, confidence in observed siallarities between results of tvo

.t4aIs dopendo on adequate experiantal dstiip. Methods of analyst can

then be of assistanoe.

I.



04 .. 't L,6.g8-r44

43I

.151 *.8 q *0 el q t*~ 9H * .

4)1

4) 9

C44

:4 ~ ~ V LID* 9 .

:3 em o HZ820'0csw q

*,**te to1 4

14

+0 0

44 -9 0

4i~
9 

4i_

b! 4.)

vx4 V, #I O I 1 -

43~ It__

E~~4C" Lr% 0- * . ~
6r



Tagl

Reference Congrunt, 7satdrs

zv actors A B C 71*k

-I.1156 -. 2175 -. 0188 .0572 -.]2&9
it --7-5 .0829 #30 -. 0972 .3290 -- 14.
it -. 5618 .7978 .1197 .1.222 -. 8314 .6199

-=15 !-44 50 .2500 .2159- -. 5081f

I-vi -. 4190 -.2634j .5835 .7162 .5301l .3955

Smvy B

3VAtrixT. 3

Reference Congruent PNe-tors

)xctora A 13 C D 7*

I .158l4 -. o729 - .6544 -. o656 -. ow2 -. 1651
' I.1545 -. 1961 .1053 -. 1769 .1405 -. 1439

III -. 1L594 .1217 -. 2053 .061 -12o6 .6391
IV -107- -1;82 5 .1095 -. 3203 -.1741 a1678
v W365 -. s780 wwf .x139 .6545 -10-3

VI .6015 .5972 .6999 -. 1570 .0429 -.02-69
4viI -. 1792 oi149 -. mS0 .ao86 -.10 .1910i

VII.3478 -. 13(8 -. 2637 -. 1773 .952 -06
ix -. 1983 -.2664 .0524 .5074 :o942 -. 0988
X -. 18o3 .150 W323 -46571 -. 1605 -.5283

XT -. 3,097 .1=o4 -.06-2.3 56-i0 -.4435 .1459
XII -. 4391 .0301 -. 1371 Am01 -2581 .2066

*Congruent Factor F had such a low coefficient of congruence
that it vas eliminated from the cong~ruent space.



Table 6

DI1POO 0061W OF U0II-00NO1WT YACTOPO

BTUD! A

14trix Ao

Referencet
Factore Not-Cor-uent Fpctor

-~- 0827
ii :7 91

iv -.1653
v .4628

~~'eretee on-Conruent faetors
1 2 3 5.

I-0043 -- 0592 -. o24~4 -.6059 -. 1537 -. 2042 -. 4416'4
II.18m) -. 29sl -8158 -.2423 -. 1728 .o6ig -.1653

'II -.5234 -..,476 .2507 -.3179 .6,57 0 0
17 -2,3 -.110 -,.1946 .052 ..%70 .1871 -.0515

11 M235 -. 4013 -. 2307 Oh194 P/,,2 .2273 -17 41.
i.,-, 15 .i~s- *o83 .o4.57 .2'2,50o .e2a -. i6 5o

i .tI-. 9C,'.', -. c 5e.3,6 .891 .o215 -.076 .
i- N-51 .0oh7 ,1676 .0511 .05.32 .- ,05 &3V5

-,m14J. .5799 ,19 5 -.0095 -. 0942 .2317 -.1o00
X -. 2405 -,It9, -.G2 i -. -,i8 99 -.4636 .210i5

X1 G 6,,.a -. 52,rl -. coz8 .000-6 -.120 .'(265 0
XI ,7532 .0981 .0179 -.1858 .-907 -.2234 . 4

-

J -1
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- !.S - -- ' - '

:.' 1

r ! , 1~ -.113 ...:732 -.o865 .O54 -07

Tp nmm~r?1~Tof To II0T1 CQ0RUUW FACTORS
Thc3 EI=CX 7ACTORS

STW) A M4atrix u1

Refertucs Rotated Congrut Pl~ctors

Ti . actors a b 4

it ±-.2o85 -.0o435 .0141 -. 13714 AM97
li .33435 -.1220 -. 0731 .9301 ..1AtS
:v -.6100 .3790 .2769 .0906 .5285

.1o48 -#529T .742 -. 0567 -.5316
-_>: v .2558 .7629 -.84133 -.01S1 -.1750

I sTuD B Matrix y

I Reference Rotated Congruent Factors
F actor$ b d A

I .73M8 -.1017 -.21J9 -.178 -.14l1
027 -.022 -.0270 .1768 -.1925 .1504

111 .1374 . 70 .68 .0799 -.2273
.7 010 .oo 886 .5585 -. 1060 -. o779

v x4 66 .35,o2 _ .2186 -. 4190 .4706
VI -.4202 -. 3465 .2638 .2205 .6W6
vn .095 .Mo0 -.0935 .08W -.16295n .e6 -. 95 -.056o 3.o.6 -.o

I "X ;-.29188 .64:53 -.1669 .2038 .12TO

.35 -,20

i i

. . -. g o&) . . ... 3

Xn -o~lg .3o2 -. 889 479 .272



* -"* g ' _ - -•

I t .2o9.-06..o6 -. o G ,o -.;;8

j LOAIX Of I NX-VXAP . ON FMI -A0TM ,A.

SiTM A 3Iw'fa

."Loading on foteA Loaings C - iobtz ,
Test Code Ootgruelit Taotora Test Code op*t ~tr
Numbers b aNu~ews b 0

1 .2836 .29 .652 .f15 -. 355 -1121
3 3.37-06 o8 3V~-03 07

10 .0915 .36-.1694. . .5123 .0809 .. 0333
2 o08-7 -.1056 -An. -. 13M 0 .5196 .0516 0672 -. 1735 6*2100 -. l -.o22

7.: -.0o70 .o1. -.089

8-.0730 .004.6 -.9341 8 3794- .0241 -.1869

9 .1.75 -60678 .. io0925

10 o0260 .0315 ooe6U .,0461 .0M6 -. 002

12- -. 67--O -45

16 . e4 .2867 .6842

.0962 .291 .
20 .o1.o6 .0655 .0291
21 oa3~9 .209 -. U105
21. .171k. .75 -. 09914
25 .1.1E2 .:0729 -OM7
29 .0179 .19-3T .11.95
31 .os, 8 -. QI66 OZ57
35 .2651 - .0655 .011
56 .Onp- .0JP2 .01M738:!l! -.31 .1 51a+00

41 1 .1107 -. 0617 -. 1615
42 -40351 -. 0561 -. a-48
43 .1463 o5-a8 o0594
144 -.01,99 .0yipS -#2053
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These scam are 60VIAtion Score, .but no restriction s 1aed an their
t variances. 7he restriction of deitltio scores is of w Impotance sinoe

corcin fo Ow On te fActor scores 1eads to correction formes
of the test scores without requfriug a change In th. factor gatrix. As
a consequence we shall igore any' difference in mans betwee" poups,

assundag that vithin-group deviation scores are used in ll ease. (MhIs
action vould not be varranted if groups vs- to be combined.)

-oquation, A. and A.3 ee the usual ones for tables of mvigs e. and 4ovwiaces:

b si een equation A.1 is substtuted into equation A.2,,

++ Elimiating the factor-score ratrices of eqtaton A.4 by notin that the

.risht-hand side of equation A.3 is Involved In equation A.4,,

C , 0 C F , (A .3

.I + .{ uatiou A.5 is the generel factorial equation for coarrianees.

2. TraneformtIon of Factors.

In this sctioni an inlutve proceras In -,ihich it is seumd that

tmrtoi~.itio.-W are PonSlble deew appropriate, and the proof consists of

a deroStration tht this assuLnbion _eid consistent' results.
+ Let Tr be any isq ra marix of an order eq.t to the number of

fa-2tora and for which an inverne ests. It is our &nou~tio that this mtrzx

can transfor on factorial svtrix, with Zactor. 2 (alternate subscript 1), into

arothez' factorial witrix, with factors r (P1ter-ste of .e~:r1t ),by _qtw

A.6o,

F P

-+p~ . --p • (A.64 ±',fl%

_ _ _ _ _

iP • +
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7 T (A.6b

Substitution of equation A.6b In[to equation A.1 yi*Us

A Jr~pl(A.7

Z- Lt the toloviga definition of timnoforation f facores be ma:

Xr - T s'kX I (A.8&

p i prr (A.Bb

Squation A.7 then beconA.e uI; (A.9
Equation A.9 reproduces equation A.1 vith factors r replacing factors V.

Equation A.5 can be Iwdia*tedly ra-written for factors r:

Li 0 k 7Fjrrank' (A.10

-S iielarity of equation A.8b to equation A.9, if rAtrix T~ Is considers&
to be a factorial matrix for factors in terms of factors r, permits equation

A.1O to be re-written.

C w T C T' tjn(r~A.U

12 ash tora of s~ethe equations .bed A.i . the _aecon rlateo

I . r.) SubtAitution of equation A.lla into equation A.lO iel~u:

rq pr r q A1IKI

(Noting th'.t the frst to natrces on the right of eqation A.12

f r a r touce ah ri t-h2and si.e of eaqatin A,6b 3 ate tat tho laut tfo rs tri Oe-I F ro-nA
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S "of equation A.12 are the transpose of the ri4t-bhaS side of equation
A.6b, the corresponding substitutions yild equation A.5. Thus the
system is internally consistent and the transformation of factors Is

yoasibleq

Since there are an infinitely large number of matrices whio

1• "satisfy the restrictions that they are of the order equal to the number of

factors and possess an inverse, there are as many possible sets of factors

which satistfy equation A.5, or A.2.0. This Is the same p0oblem as encountered

in the normal factor analysis of correlations$ and the solution proposed by

Thurstone that transformation be to a simple structure, Is appropriate for

the factor analysis of oovariances. Actually, factor analysis of correlation

is a special case of factor analysis of covariances in which the additional

definition is imposed that the variances (diagonal entries in the 0 matrices)i

be unity. Existence of a simple structure. however, will not ecopletely solve

the problem for fact. analysis of covariances. There remains a problem of

changes in the size of the units of measurement for, the factors.

SLet thore be a change in size of unit of moasurement from factor.

r to factors R. This results in a proportional change of all ecoros on each -I

factor. Equation A.13 accomplishes these proportional charges where ' e

diagonal entries in DrR are the constants of proportionally.

scre

In order to simplify the algebra) the scores on factors r were considerel

as proportional to the scores on factors P. Equation A.13 is similar to

equation A.Sb, in that in A.13 factors r e.a being tanaformed to factors

R 1y the matrix D J just as factors 2 were tranoformed to factors r by 1ie

matrix T in equation A.8. Equation A.6a is then re-written:

JR jrr R

In this case, than, the columns of f'notor lo. _ang on factors P are

proportionl to the loadings on factors r. Thu configuation of zero

factor lcadins is unchanged by this transformation and the simple-

structtre remains. Equation A.lla may be re-ritten.

~~~~~~~. . . . . . . .... . ... +.. .. ,...... . . .... .. +.+,,.., -
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Since the faotors are not directly observed, no experimentally

determined set of units of measurement exists. This poses a dilemna, forE
any set can be used and the simple structure will remain. For any singlis

fator analysis the factor units of measurement can be left as unknown aedL

a restriction placed on the variances of the factor scores. Thus the

diagonal entires in the covariance matrix OiS can be defined as some

constant such as unity. When several factoFanalyses on different

groups ai, being considered, this simple solution Is irappropriate, for

P the resulting units of measurement may be of different sites for the

several groups.

3. Transfor-etion of Tests

Two types of tranoformations of the tests are of Interest.

In theory, the type in vhich weighted sums of the toots are taken as new

variables Is the moze genrral and includes an a special case the second

type in which the units of ouauramnnt of the t..,ts are changai so as to
chang" tho scores proportionally. let it be desired to obtain variables

frxtm tests by a wolghiing matrix W in accordance with the equation:

.hi - WhXji (AA6

If equation A.. is pre-multiplied by "hJ

Wb3 Ji " ) jp pi ( .1

The 'I(ht-hand side of thi equation can be simplifibd by the following

def nition:

11 - WhJFJp (A.18

A When equationa A.16 and A.18 are eubstituted into equalon AIT:

Xh hpi (A.19 11 M-
ih

4

-j
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]quation A.19 is similar to equation A.1 MA.afl of the derivations of
sections 1 and .2 apply to the variables h. It is to be noted that there

134 was no change In the factors or factor scores. "

If a changrIs to bw made in the units of measurement of the
tests so that teat I beoems test J the eight matrix of equation A.16

becces a diagonal matrix so that the scores on each test are change.

proportionally. The weight matrix can be designated by D for this case.

Then, if the subscript j is substituted for h and the matrix D In

substituted for Wh, oquations AI6-A.19 give the relations for the tests

with now units of measurement. A result of this iv that the analysis amy

be carried through with one set of units for the tests an& the factor

inatrix can be transformed for a new set of units. For sake of later

convenience equation A.18 is re-written with the necessary changes Indicated

above:

F aD F. (A.20

E ffects of Betwean-Oroup DIfftroN!ce

* In this section it Is assumed that the same battery of tests

and set of factors axe involved for two or more groups. Equation A.1

is asuned to hold for each grbup individually. It is relatively obvious
that within-group matme scores can be Ignorel provided that the grougs

are not to be cezbhn,d. Deviation scores within each croup can be

obtained vithout chaiSing tho factorial matrix, an& therefore ull be

us~d. LUt there ba two groups, A B B. Equation A.1 then extnds to.

X .ji X'ri (A.2.B

VA .erA

(Capital lettsirs are used at the end of oquation nunbora to inlcate the

A or R to tvhiih the. eq ... . It is acuMea that the

S groups are sufflclontiJ similar tht tho fectcrial nature of the teeta

reain unalter-A. If this is true, then for cany partlcular individual

it should not mtter within vhich &-oup ho is conoidored so far as the

factorial equation fcr hin scores is coacoifle. ThO factoriail oquatima

________
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should thotrefore be psa.lslwvth the same factor mtrit? as showI

in aqwfttion A. 21. The astricea XjiA, X St WIso r1B vi f l17o
with respect to which people are included in the groups A and B. By

equation A.5:

~[I
-C F Cr F .. 2

kA jr rsak

An implicit assumption in equation A.21 and A.22 is that a

single unit of measurement exists for eaoh factor and is cocoon for the

two Sroupa. As proviouuly noted, the unit of zeasuremsnt cannot be
observed for factors. Consequently it is necessary to derive the relatiolm

botweon factor rmtrices for the two groups when the group factor variances

are afCirea to be saaa conant. Tnmploying the transformations of equations

A,13-A.15 and noting that the matrices DA are particular to the groups:

) 1 EIPA. - Lra XriAJ (.3

- _,-p (A.a.A

It s tar noe i eut' A- g tht(A atr .rAe

F (A.24B~jr rRBl

C~T -DrC;'2 (A.25B

It is to be noted in equentions A .24 that tiia factor izatrices

f or fe',vcrs Rl noi htr a subscript do rating F-roup. 11ben ;,juations A.24
are Io1voi rniv1to-neoisly Go aS to eitIJiarAle F, .

F ~F.D (A.26

4i 1ArrAr~
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i ~~~Tu s ibeo abe the two fato atleeae ouia-lmaxloe,1 boy defini r,

D' D (A.27

Then

- tu h(A.28

Thus the two factor matrices are proportional by colus. It Is of.

interese othat the diagonal entries In are. the ratios or the uvaences
on factors for group a to those for e th

j factorsbhuven ough the covarisance matrices an of d ha- d le

I sawe diagonal values, the off-diagonal entris-TI differ in to
sampling effects, either from random sampling or oelfttve sazaplIng.
If, as might be usual, the factor varlances vere to be defined as mxity,

these covarianice ratrices iiould become the correlation matrices between

the factors for the two different groups. tinder the assumption that the

factors have some reality (which is necessary for any of thle development

and any hope that the same factors are operative for the two gro p p), itI would be expected that the correlatiton matrices for the two groaps would

I

i differ.

I7

i"
i



.. .... - + + + * 5 .. . + ..... ... .+ +

a- . .. . SS 5 !

1 Itis desired o eeminexu the faors o a or min m oneg

~(jr I A
A' :lj.. . PZIZ

Consider that the a mlysa for the to stuoes have been fA

eu cohurea ted reference factors for the roups Involved. An set of

aorthogonal factors may be usea hether they are the original factors obtained

or an orthogonal rotation from the original factors. Iet n reprsent the

+ :referonce factors for study and M represent the reference factors for
study B. Then by equation A.na:

AmA mrA

Fr JWBMrB'

(Tile last lettr of equation number indicates to vhich study the equation
apAles. When boti studies are Involved, no letter will be used.) Wrtlng

1 thena equations In surmitional notation:

rA E mAt mrA' (B.2A

fJrB ' JOSr

uhen equation B.2 are eubstituted into the 1n4ex of oonnence In

equation i7.5,

E (E ft4 tmrA - fv
(f f AtmrA + f f tMBt4rB~

'1

• .' . * 55 .tt, •' *5~5 ,s ,v# 5-W 5 V -=.. ... 5.#



Inspection of equation 3.3 reveals that all too can be multipliedb'bVam constant without altering the value of gr,. Thin Is true bemause the
4*constant enters Into each tern In a similar maner, can be factored out, and

then cancelled from numerator axM denominator. Therefore, it.is possible to
define a condition that the derninator equals same constant X vithout limiting

the @snrality of the solution. The equation giving this Oondition Is

and.3Sbecomes aEZ

Using I8Granges system of undetermined multiplers, the min1:mum can be
obtained when

nrA-0o. (B.6A

Subatituting the Indicated jartlal derivativea Into 3.6A,

JM r .W 1N r 2r (E-m~mrA

fNMBiir~B fJmA0

Whlen the oquation is expandrlC1, and terms are regrouped,

(1 ~r) JmA(in JmArA) ( r fA (' f&A~rd-(B

Writing this equation In zatrix f'orm,

(1L + Ap Jn~r ~'m d B r3 (B. 9A

Define (1 K )(B. 10A
Or

4I



I_ Similfarly.. finding derivatives wth respect to".

______________ M ' * '

o !(Equation B.11B can be written fro B.11A by interchangin Me* i

-! I. *. A g,.

The meaning of Orcan be obtained b pruIrt ftion

Wrltln .11 by~Ton which gin vmatoalrot

or.,

r Sitl i from oquetion ativ .= withr stat

:FJr OA'jrrA (3.13A

1' f E 4

-i. f JrB

1~ ~ ~~izlr. m-a quation B.II11i can be showne trm31J ~ ha gn as

id'sO ant Me pn '.

NutIng i-ht the numoratora of equations B.15A and B.tIiB are equal,
Athes eqvations eolvsd simultaneously give

AA

F, TA (L2

,r tA.M r rIrFM JIA



+- +, - -,Therefore, the sun of squaes of loadings la we study an a congruent

fac Bbtutor e lro te-am ofe squares oflains1.teohetd and t.1 le

M 1;
* '. F* >a.n .Si 8tOb oe ha .i we _i

f aIn orertrlaeoran, equation Z.IA Is exane rertteo

- . . U
t i2. +n a . The f-, f eet

ft a creation ia equatons corretion 3.15B MAe 3.n thsy efo eaao

r~

-,Tl siacnrs v~ _ n called ant In -o cn-.- ee.

F tha t,a B.1 Iatu Is ut bw otd thlate grfeah---M e hn o thato

m aimum.(O the e osite rane of f le n ne cmaudcae£ anruser- fcorieqal to th ciof eues of a os Ieh. otr tudal uoe it
o euat er o r.l aat lu a. mae .quat.,o 115 io ai t

2r ftfJrA JrB(B1

j JrA j JrB

forba trrttiofrn equt~ato corrections ae 3.16 I tis asefrm o

th prfacrtor ldins.cifusng ar migh elled cepal --- i of he ccefflclen
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01. .: In solvin equations B.IIA and B.11B It seam sd bj* to
- -obtain the latnt rots La latent vectors of the zatr# - ( . .

• o Tble i0anII1

and ( .F ) lotAm~k o anorthogon2alrnfritm atiigte

latent vectors and. be a diagonal tIx containi g the latent roots

Of (FonhmAeJmA). Th .  e} (~~4rA) AmjpA _89A A Mppe (B.20A

See Tables 10 and U.

Ei helaen vctrsare frequently called principal ein teo analysis.

factor loadings on the principal The,

- . --.. , F - T i., (.

u o eA ti(..2

-j FAj*.S

Sooi Table 12.

• I
Substitution of equatIon, B.22A Inequhtion B.20A and sl- lff1atian yields

eachdiagnal ~ ~ n th ~u(B. 25A
l 2ch !attnt r-oot, located in ta diag al of is the um_

of squarea of the cor~rouond-ng colun of 'F e,. The n-iFai axis with the
aruillsst latent root has -lia proparty of being the fac-tor in the apace definad

by FjmA with tho minizum eum of squarea of lcading- -* prizcipal axis with

the noxt to sallesb latent root haa the min-Iltn sum of ST ar-. in the space

4 *4.



+statownts concerning sin~mm au of squares of I*Wns can be made

+i ',-+ concarnlhg the oein principal axe taida thm In order tf= smallest

+++to, largest, In each case considering the spaco b on to the proeeding

+++ a "tests project into the dimensidono representad by Um Iincipal axes. When-

~ever a latent root to sero, all tests must have zer 1oadIWK on that ]pincipal

+] ais . Ans indicated In detil later* this conliticst of a zero latent root

r+ =+. 1causes the solutionto0 equati~ma B.13A and B.JU to be non-unlque. A small,

b ut non-zero latent root indicates smal loadings. This condition in likely
:"!;]to occur when the overlap tests represent some of th factors In the study

but have only small random loadings on the ot her fhtr. Such principal

Saxaa witham I latent roots may be deleipted, to a am-con~ruent space of the

• study by 1l-lting the congruent factors to the space; defined by the principal

+ axes with signif~cant latent roots. Study B, the, fccr principal axes with
Ssmallest latent roots ware placed in the non-congrusmt space. No precise rule

" -has been develope for dividing between those primal axes to be delegated

+ to the lion-congruent space wAn the 8ee to be use& in determining the congruent

P: space. It Is important, hcover, to exclude frot the congruent space those

• "dimonsious into which the o.erlap tests have small j-rojeotlons,.

+ ,,Consider, for the prevent, that no latent T-ctors have been

], "++- _ .dropped f'ror. for A~k and substitute equation BM2A into equation 3.1A.

Then: lr P

' "o jrA FjpA A zp.A4 Tzr, (B.24A

; "; FrB= FpBAt Tr B  (B.24B

+'- • -Define:

TI As

l,' , .. ++ pr A  M APm A T rA; 'ms

4-, '-4- 4

(B26

to te cili wt h+ A T . (al.e o

conTen th e-Aa in persl:

- =+ - .+-_. -- . ,1# . + . +



I Vhe equation B25 to olved tfon .W 3e

TimrA AnVA9r~l(B.27A

SSubstitution of equatios b.A, 3.22B3, =A .2M Into equation o.UA 1*Met

I -stde Szr.tlhotls fgnrlt o pA th oe~ t *e (LSA

Simlifcaionbymeana of equation 3.25 yieldet

lin tion bsy Aten ast eo(.29A

Simlarly:

JP pA prA r zar'prB 3.9

The'ratrix product F' for the rowpse is given In Tabl e .

Consider now the case when on of the latent roots In ome of the

a toudies Is zero. Without 10: of generalsity of t Fhe developwnt, the last

latent rootent i study Acan betaken as t particular zero intent root. Any

other latent root could have been chosen, It Is xerelj a matter of convenience

The last daconls entry in in then zero. Sine A  is a 4iagona1 matrix,

n t prhduct vPAueA in equation B.= results In the rove o a'_ being
vultiplied by the correspondirg latent roots. The last entry In T Is, thus,

rultiplied by zero. When a latent root is zero, howevar, the 1CA&Inge on the

dorrosporling principal axis are zero. The last row of F,,therefore, has

ro entris and thelast thery in the aroduc tr A doe oft

'4 h

.qrA

wheretqrA io used to denote the last entry in T Thbis equ.alvion Is true

no ;rntter what value is given to t Ieqation B.M9, thre last column
qrA I q

Ao±" FpA is zero; and, tberefore, tho value of tV does not- affect the

*eVaation. 'The concluoion is then that tki value of t is no-V dotermined
VrA
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f'by equation S.29A and 3.293'vhen the 002 empandUS latent root Is zero.
- .Thus, In this cse, the solution is not unique. It is reasonable, hoveverp

. to aasln a alue or &ero tO tqrA. The COntUt ftctor4, then, viii not
- -involve this principal axis rhich 0an, thus, be deliptel4 to the non.

congruent space.

Other principal aes can be dele to& +& he non-congruent space
' by defining the corresponding entry in TI T,) to be Wero. henever

any of the entries in TprA are defined as teo, tbme entries, the

i A corresponding columns of and Awp (or Fj, Sod Am), and oorresponding
rove and coluns of,# (or$eA) can be dropped vithout affecting equations
-. 26A, B.27A, or B.29A (or the corresponding B eqwtions.) In the following

develop ente, it vili be considered that these MtrIces have been so reduced.

7 ;Consider the case vhen there are as w= significant latent roots

o in one study as overlep tests. FfpA (or 1..) is square. This matrix then
.i 1vill possess an inverse. Equation B.29A can be solved for TprA:

T aF; ., Tr 3 " (3.ZOAprAA

.~.1

Is unity for al TprB . Any values can be ansiso4 to TprB and a TprA can
be obtained. Thun, perfect congrience has been obtained as a mathematical

I noeeesilty Irrespective of the charactaristice of the teats In the other
study. No confidence can be placed in the obs,rva=8 of such a congruence

" 1of factors.

Sin'e only thoSe princioal axes have been retained that have
silificant latent roots thefmatrices are non-sifr.lar and posos inverses.
It is now acumed that there are more overlap testa than si~niflcant latent roots

•i in either study. It is convenient to define the column vectors:

MrA pA prA; (B.31A

rJ *a-rBl
'G.'. ,; , F PB. (B.32

- " = -A JTA JPB

I The msrlx G for th3 o spl9 Is given In Table 14.



Aa,

11.

soluation of equatioe 3.32A for TW y~ld

~A AAri(B.33&
VrA IA

Substitution of these. equations into'equation B.R9A yie14s:

G UMr dr4 (3.343

Solution of equation 3.34 B for substitutiou i n equation B.34A,

end aimplification yields:

GG-14A Mg(B.35AN

-
M r (B35B

De3fine:

4HAm G; (B.s6A

Then:HiA

The matrices HA avd are Gramip-ii vith 3-atent roota and

4 latent vactore aid A . The non-va nish~irg latont root, are iO-ertic&3.
for the twro nzatrlce8. For eiich latant root there is a latI~ent vector AA for

IA and a latent vector Ar for Table, 15 givoas the rosmlt3 for the example
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When MA and MrB are defined am proportional to the latent vectors,

equatioms Ti.57A and B.37B are solved since these equations are in a standard

form for latent roots and vectors. Tn:

M mA dr; (B358
.rA A

N1 B - 3  dr-(.8

Note that the same constant of proportionalitT, dr' is used for both studies.

Substitution of equations 3.38A and B.38B into equations DR.3,A

and B.3B 7o'ilds:

T A d(B.59K
prA -'p rA ri

-Fr3 Oh3rBr'

Substitution of theos eyations In B.27A and B.27B helds:

i " rA"a Aml "}A Zrdr (B.4OA

T 0.

nr pA "pA rA r' (~Q

It Is convenlent to define:

r~~rB * 4'A F ArB (.l

Se Tablo £..

T =T iT

n A n A rA

T AT A

r~rB !rB "r (B. 423
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The constant, d, (ww for each oov~rmt; ftotor) can be deterse suc~h

that the avrage BU Of Squavs Of the entries in T a A n rB is unitT:

Ar j

Thi is sailar to the usAl raoctce in ftotor ana es of making the su

of squares of entries in a factor tranaformation vector unit. In this case,

the tranoformation vectors for the two st les can not be normalized

psearatelr. it Is, thee, reasonable to normalize the two vectors on the

.vorage. Tn order to acoomplish this *tep:
d, 1
dr

vhere the r's are the entles In the 7vectors. Tab0le 16 contains the dr's

for the exemp1a. The trensfor7ation matrioes TxrA " TMrB are in Table 5.

Whsn the traneformations to conxgruent factors, TmrA aM TmrB have

been determined, the mtrices Fj A exd F'rB -f loadings on the congruent

factora can be obtained Iy equations B.1A and B3.B. Table 4 contains these

taarricoa of loadings on congruent factors for the example.

The e=nYtir.S procedure given in Appendix C is based on the

foreaoIng equatio-ns. A amplifcaton of steps as obtained by aefining

i T.o "A r

T'pa. =A A (B.RSA

Only thone pr ncI-al axoo with slnfi.cait latent rootn are included in these

e, 1tca. Subutituition of eiquations B.21A, B.23B, B . 45%A, and. B.45B into

eountic n 8.53 yilds: I
nPA ZM NB .B (B.46

With the d, tlalt!oae of equations B.4A!A B.45B, equatlons B.41A and B.41B

?mrA PT (BA IT. 14rB B ArD (-4I



.: When the congruent factors and coefficients of congruence have

been deter izne, one or more of thee factors may be judged not to be
suffioiently similar to be continued in the congruent space. This I.

indicated by a low coefficient of congruence (or a high index of congruence).

In the example, factor ?, vith a coefficient of congruence of. .459717, was
eliminated. The remaining factors then define the coniruent space between

the two studies.

After the congruent space between two stidies hae been determined

by the congruent factors, rotation within this space is possible. Consider

that it Is desired to find the loadings on a set of factors a which are

defined. as linear combinationh or the congruent factors. Let the coefficients

for these linear combinationB be included in a matrix T . There will be are
column for each factor a and a row for each congruent factor r. In the

example, after an inspection of the loadings or- the congruent space, it was

decided to:

1. Define five vectors as the sums of test vectors in the

coguent space for five sets of tests indicated in Table 17.

The sums of loadLngs on the congruent factors for the tests in

each group are also given in Table 17.

2. Define a st of five factors so that each factor would have

zero ioa;1inge for four of the sumation vectors. Fach factor

vculd ba defln.Ld by the samation vector with a non-zero

loading. This coul. be accomplished by computing the inverse

of the matrJx of lcadinge of the. sumatlon vectors on the

cntgruent factors. The matrix 7 in Table 18 is this inverse.re

The factors a are related to tbe reference axes by the equations:

A

maA mrA' Ile (a.48A

TMsB 4M-rB re (B. 4W3B

-4 See Table 18.

The tinsfcria-on vectors In and r,, are ncrmlized on the average bet.ween

the "Yo Stva e;'O' ae the coengraet fa.ctors wero nci=alizd on the average



bewne studi In equations B.4 - B.4. The equations for this stop are:
-'F a~ MeO I .

1

wmA ns;A a* n.o

MO Ma 7 (B.50B

See Table 18.

Loadn6s on those factors aze found by:

7 ~1aA~~Izu usA(B.51A
FJaB ~xrs

See Table 19.

An alternaivWe rietho& ic to define:

ls reT & 3~

Boo Table 18.

Then:

?JA -F .A T.s; (B.53SA- FJA FrJB ATr - (B.

A roint to note is that sOhce the ioadings in FjrA an4 F..,. are similar due to

the solution to congruence, the ledn s in matrices iJsA u.-i F.sB iust also ba

simil~ar.

If it is deairat to rotata the axes to a now position z, a similar

cycle to the proctoding is taken. in equations B.1I8A - B.55B, eubstitutions

cf a for r and of z for a are nade. In the example,a rotation as indicate4 in

Table 20 was decided on. The regta of this rotation are given in Trables 7-9.
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, :The loaing of the non-overlap tests my be obtained at any

' tie In this rotational Mocedure, by, extending equations B51A and B.51B

, : to thesD areas o'f the iv for'oe factor matrices.

: - Consider now the non-congruent factors. There wll. be a set for

-" each study. T t n£ Ui Vdsignhate the non-congruont factors In st~iles A

:' and B. The transformations to these factors can be defined by "the equations.:

-TrAA m A  -0; (B..A

-. . .. . s. o 1 ..

* > ."g , , , ,.S...(*-' . .*.C -

ALmAAmuA n J

, -. - -. __ _. _ 1 '. .

* .4 ________* (B__*B

These transferrloalnS aof sections of ortnogonal transfoitaions vit as
o many col s as thoe. are noncongruent factors in th studie. A cms.ting

procedure forsolution "o these oquation is given In Appendix . Peaults for

4 fthe example are given in Table 6.

1 t A~-0

Aiu1nA I

-*

.
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-++ . . ,.i, . . . .. o.o

IJn

A I

taut u

- ~LA= 1VTM AND 2F00T FOR On"J M8U

7mto -I P-2 p-3 V4 p-5 p-4
I .A0 -. 129 -. 9910 -.2189 .1289 -.0800

it .1522. .3 OW95 .1030 -. 61 .0561

Lv .689 .1e69 *005 .0 .252.9 -5M26v .31.31 -.6006 .2605 -:41972 .314. .328e
vi .i8W6 -.3A61 .12 .2618 :828 .2987

i2.Mo .891o .5534 .487 .299 .1945

pI .1.757 1.1225 1.8072 2.1800 3,1.09 5.11.0T
.. B .AT M .. ,

2efo-enc. Princlpal Ax.
,o.tors P-i P-2 P-S P..4 P-5 P.6 P-7 P-8 P-9 P..0 P-1 P-.

I .r-.3 -.- hq. , -17M2 -. 1588 - 0168 1 -.26 .0043 -. 0592 -,01 -.0
"I .oN.9 .156a .1100 -.09'37 .0187 .26 ,1817 - 1. .1890 -.2924 .8158 -.2423

•1 1II .1 9 -. 2074 .049f -. 1T7 -.1152 -.1.316 -.31.93 .3719 -.5731 -. 0476 .2507 -. 319
V.565 .6Ce5 -. 8 52 -. 46 .T94 .=3 -. ooe .1536 .c288 -. o -.191.6 .os2

.S451. -.14o .5".C4 .o&r -. 6084 ,o72 .1856 .,so .2235 -.. 013 -.2307 .094
-v .377s -. 86 -. 135. -. 2r26 .1696 -. 2437 .5C81 .01CC .1.315 .139 .081Z .O43T

VII -. oG55 -. o-7 .00.1 -.10':6 +.0001 -.a405 -. t216 .oW. -. WA9 -A.o4.W .3262 .8n
viii .24,&, .1s55 -. 673P .5767 -. 5151 -.1317 .0125 -. 162 .0,6 1 .c. .1676 .011

ix .3F, e .1777 .W-0 .28A& -. 01.4L6 -. 0156 -.0055 -. 1.25 -. 11. .5799 .1935 -.0095
j x .0101 ,2 -.04,3 -.0275 .0831 -. ZZ57 .07 -. 7195 ..2L85 -. 4.0 -.0268 -.o16

XT .3.52 -.06-7 A-17 ,649 .591 -. oo7 -. 919 .26c2 .0662 -. 7,-1 -. oe38 .ooo6X1i cka .o6a .i s -. 1166 -.ooo -. 4;68 -. 3.28 -.1224. , -[= .0981 .0179 -. 1858

5.92(1 .52 .3425 .26n8 io59 o06-5 o06x5 o0357 .0m2 o00w .00os ooio

2 A% .9758 .5853 .5136 .W% .2598 .20 .19o ..........

.1o 1.0_48 1.787 1.9469 3.0729 3.e96 4.O530 5.2918 ..... ....

I
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["Study k Study D Principal Axes
° Principal Axes P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8

SP-1 5.1251 -.0021 .0028 -.0133 -.0218 -.oo65 .oo92 -.o174
Sp-2 -. 0015 -.8259 -.1292 .oM .0o51 -.oo65 .o~o7 .oo~iP-3 -. o9* .oo66 oo5 -.. oi -. o761 -,oo92 o6qq .207

PA -. oo59 .. o648 .1902 .0831 A51 -. o483 ,o159 -. o190

P-5 -. 0056 - .o496 .0544 .o6i9 -. o~o9 .o18a - .o293 .oo19
Nq p6 ooo3 -. oo94 -. 0115 .0035 .0211 -.0139 -.0218 .0100

t~

II

Ii



.ip-S-.065 01 -.*5 *- . -. ** -. 06 0 .509 .1
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Study A tudy B Principal Axes

P Principsa -l Axes P-2 P-3 P- P-5 P-6 P- P.8
t: 7 -. 0010 .0023 -.0123 -.o01 -. 0119 .0176 -.0436

p-2 -. 07 -. 9499 e.2178 .oo63 .0176 -. 0281. .18Wi . .021.3

V-S o- .0122 .856 -.3874 -.4226 -.0640 .5094 .1980

A -. 0053 -.14)48 .85 -.352 .3021 .4053 .1398 -2192

1 -.078 -.17o .3163 .o -. 6368 .2384 -. 4021 .0342

-p- 6  .oo6 -.0495 -.1010 -.035 .3 -. -.4520 .2721

StU17 A Study A Principal Axes

Prina Axes P-1 i p-2  p-3  P-A P-5 p-6.

|"p-P-I.8 .19989 .0016 -.0165 -.0 .003 .01
p.oi6 .9994 .008 2 .0013 -. 026 .0092
p-- -.0165 -.002 .7145 -.0098 -.046 -.3426

-DA .ooo6 .0013 -. 0098 .9705 .0411. .0373
9 . .0031 .06 -. . .46 -.0 .92364 -. 0958

p-6  -.o2 o .92 -. 3496 .073 .0958 .4790

"HS

*1

S t u d y B S t d B P p a l A x e s P -7 P - 8
tuy tuy Priucipil Axes 1 2 V3 P- P5 P6

.968-.1)2 .032-.03.26 -.0094 .0010 -.0497
Qi3 *9 o,866 -.13144 .0281 .0570 -. 91-.0083

-P-3 -.0142 W%86 .7552 .2638 -. 1462 -.1953 .1174 -- 1215
P-)4 -.003,2 ~34 4 .2638 .14)441 .0213 -.0300 -.3,78 -.129

P- .16 .,281 -. 1462 .0213 .7878 -.3390 -.06)49 -.0792
P-6 -.0094 .0570 -.3.953 -. 0300 -.3 390 30- .06 009

P-7.0010 -. 0971 .117)4 -.5278 - .06)49 -.0662 .6795 - .0628

P-8.01197 -. 0083 -. 1215 -. 1298 -. 0792 .0093 -. 0628 .1650

4~



Table 3.5

STUDY A AT=I A'rA

AStudy A Congruent Factors
princmipKI Axes A B C D E F

P-1 .8341 -5 .001 .359-2 . 0o

.4218 .8889 -. o367 -. oo7 1 -. 151

P-3 .1541 -. 1579 .508 -. 1999 •5797 • 5679
S- -.0408 -.1198 -.7019 .3595 .5885 .1250

V,:I-6 -.1494, .17o2 -.225 .1o71 -. 4789 .8114

* 1!

STUDY B MATIX M A

Study B Congruent Factors
Priemipal Axes A B C D 9

p-1 .8273 -. 598 -.0131 .3571 -. 2357 .Aigo
P-2 -. 3421 -. 8552 .0354 -. 184 .244 -. oop- -. 25148 -. 2164 .2918 .6393 .3930 .2030

P-404 -. 180.01 34 .35988 .c285 -. 325

P-5 -. 1925 .2711 .3160 .13A -7574 -. 1334

P-6  -. 11391 -. 1702 -.2225 -.1278 :179 -.41546

P-7 .2154 .o29 .7425 -. 1?4o .313 -. 2878
P-8 .02na .o152 -. ogvo8 -. 1967 .0084 .7318

Std 3Congruent Factors
A B 0 D I F

- 1.00173 .r657 .11514 .99517 .99092 .22109

!- .58-211 214 .39 33 23

p-4-1'0"80 .54 588 .214-39F -5-.92 271 310 .111 -771 -131
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!'able 16

~.*. V -' *~'- ATRICS Tu!' , d

i -- J-STUDY A TM=fl ,

Reference Congruent Factors
ctors A D

, 1. .6161 .1772 -. 7118 -.028 .6o -. 5498
S.484 .1199 1.1126 -. 2212 1.0255 .6484

d II -. ,7309 1.1538 .3917 .96 9 -2.6011 2.7287
V -.0019 -.629o 1.8005 .5690 .670o -2.2566

.0191 -.4748 .1492 -1.1568 -. 3746 1.5622
v:i -.5394 -.Z09 -1.9095 1,6= 1.0289 1.74o0

e(mrA + 1 4 14 00 49  2.139747 8.808218 5.248043 11.231917 18.642088

STUDY B MATRIX T
?MrB

Reference Congruent Factors
'Factorg A B C D 3

1.2039 -. 1054 -2.0761 -.1493 -. 1649 -1.3456
II.1939 -.2336 .34i46 -.4o26 .4379 -.6334
II-.2052 .176o -.6718 .1857 -. 3759 2.8145

IV Am41 -.5532 .3583 --7290 -. 5427 .7386
v .4332- -,5h76 .0317 .1682 2.0401 .5692

vi 4.3 .8637 2.2904 -.3573 .1331 -.1184
4 II-.2307 .0215 -. 3953 .2472 -. 3179 .81107

. III .77 -.1978 -.862)7 -.4035 .608V -.1160
ix -.2553 -.3853 .1715 1.1550 .2936 -1.3153
X -.2321 .2097 1.0874 1.0633 -.5003 -2.3255

XI --50-17 .5791 -.2039 *.8P62 -1.3824 .634P2
4 xiI -.5652 .0435 -. 4487 .9147 -.8045 .00

PrB 1 .874244 2.o43654 32.611188 5.114092 8.200618 20.114876

.1$

mA j~y'1.657146 2.091700 104709703 5.181068 9.71&^68 19.378482

Sd .7176819 .69143.3 -.305570 .439329 .3208312 .2?-7164

J
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Table 17

IF? i" " ~&SMTION VECTORS FOR FIRST JOTkTIOV IN COWCMMIT SPACS

Tests Used Sum of Loading. on
Suzmtion From Test Ucigruent Factort
Vector Study Number

a A 18 1.3562 .186 -. 3866 -.181o -A.15
A 9
B 1
B 26

i b A 14 .0133 -.7811 .007 .188o -.0156
B 22

A 15 .3476 -.5268 .2662 -.3428 -.2937
S33

. d A 11 .3oo6 .5138 .1349 .il -.4279
B 27

e A 16+17 .8516 .2690 .3M18 .0193 .3379
B 30

!ii i

7Ji
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K::FACTOR LOADINGS FOR FIST ROTATION fI CONGRUN SPACI
STUDY A I"ATR X

Loadigs on Rotated
Test Code Numbers Cor.Fruent Factors - a
SStudA B a b d e

18 1 .19 -.01 .02 .03 .03
9 26 .32 .03 -.01 -. 03 -.02 S
5 23 .02 . 2 -. 05 .03 .09

12 28 .06 .30 -.21 .13 .04
4 22 -.03 .30 .02 .01 .02

13 32 .19 .22 .01 -.01 -.03
114 34 .23 .6 .o6 -.03 -.05
15 33 .00 .00 .31 .00 .00
11 27 -. o .00 .00 .35 .00

36+17 30 .00 .00 .00 .00 .32

STUDY B !''PJ J8

Loadings on Rotated

Test Code Nugbers Congruent Factors - a
stuiyA Study B a b ac d e

$" 3" 1 .18 -. 01 .03 .03 .03
9 26 .36 .014 -.03 -.04 -.014
5 23 .01 .32 Olt1 .03 .10

12 28 .o4 .29 -.20 .114 .05
4 22 .03 .32 -.02 .01 .02

114 31 .23 .x6 .x6 -. -.05
15 33 .00 .00 .51 .00 .00
11 27 .01 .00 .00 .35 .00

16+17 30 .c o .oo ..

iiJ

!'
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APFFMIDX C

CONPMGT N PROCEDUR E FOR SYNTMEIS OF

The following set of notes give detailed computing procedures )
to implement application of the method presented in this report for

synthesis of factor analysis studies. For convenience these notes are
i divided Into five sections:

1. Congruent factor computations.

2. Rotation of axes in the congruent space.

3. Determination of non-ongruent axes.
4. Determination of latent roots ant vectors.

~5. Notes on matrix computations.

) Section 1 contains the basic elements of the method for synthesigs of i
fctorial studies. Section 2. and 3 pertain to subsequent steps. Sections

4and 5 are included to facilitate the compuatior of te .preceding three

sections.
While it will be assumed that the work will be uder the direction-

of a person competent in factor analysis, only a minimum knowledge will be

assu for t... pnerson doing the computations. It will be assumed that the
person performing the computations is trained In the operation of a calcu- 4lating rmchine and has come krowledge of statistical computations. No

! knowledge of mtrix algera nor of mtrix co=putatios wil be assumed.-[ii
) Section 5 of thesr- notes Is intended to supply the limited instruction~necessary cocerning matrices, While specific references ill be rmae in

. the other sections to relevant portions of section 5, it would be advisable
. ~that the person doing the computations to become familiar with the contents ..
,| ~of section .

;

-'B

,!I
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1. Conguent Factor Comutation

The computational procedure for determining congruent factors

A I will be illustrated by a fictitious example. tTable 21 gives .the factor
matrices A and F and standard deviations aA and a for six overlap

j tests in Studies A and B. Study A has three factors, Study B has four
factors. Each row of each factor matrix, has been sumed with the sum being

k recorded in the E column.

5.Equalize Units of Measurement +a

A) Compute the constants dA u JA a(j'A + B)'

and d (/I(a + a ). In order to facilitate
33 JB32 JA 31

computations a worksheet was set up as shown in Table 22.

i The operations in the successive columnn are as follows:

1i .1) Enter the OJA for each test in Study A in column 1.
Total 'the entries in column 1 and enter results in

row E column 1.
2) Enter the o for each test in Study B in column 2.

Total the entries in column 2 and enter the results in

row E column 2.

3 3) Sum the 'JA and 03B for each test and divide the sum

by 2. Record the result in the third column designuted

2 (JA+ JB). In order to check the entries in the

third column, total the entries in the E cells of the
first and z, cond column and divide the sum by 2. Enter

the result in the Ch cell of the third column. Total

the entries in the third coltmi and enter in the Z cell.

T e Oh and Z enrtrea should agree.

4 ) Divide the aA an'! r in columns I and 2 for each test

by the A(OA + a ) in column 3 for the test and recoid
2i JA 3D 

CB"'I in colmn 4 and 5, diA andd 3 .JA JBA
1i
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5)Sum the dA and d JB for each test and enter the total
FE. in column 6. The sun should equal ..

B) Compute the Reference Factorial Matrices for Test with

Adjusted Units of Measurement, F~m for Study A and F

for Study B. See Table 23.

1) To obtain the matrix Fm:

a) Multiply each entry In the first row of matrix

PjA Table 21, by the constant dA for the first

toot In column 4 of Table 22:

.3 8 - .32

-.34 x .89 - -.30
.48 x.89 - .4

b) In order to check the first row of F.T.A multily

I the sum of the first row of F N  by the constant

dA for the first toot In column 4 of Table 22":

S" 1 ..gx .89 - .44.
5) BuntRecord the result in the h column of tA S

~the entries in tha first row of FjmA and record In
the n column. The entries in the Ch ar Z columns

should agree within 2 of the last decimal place

J carried.
Dc) Compute and check thea tries fo each ts of FJ A

,I In the ameasye, using the corresponding row of

4113

SFA in Table 21 and the correpo reini constant
dA from column 4 of Table 22.

d) Obtain the si= of each cohemn or Fjm.

. 2) , puotha ',ttz' -x1 foi-ing thoe ri- -r nnndore

.... 5. xM .. .3..2

a outlink.d for th t-e uttion of Fof by uslin the

rows of FM B and th fir s he condstB n

~b. Compute the principal axes for the tests In each situdy.
A) Compute the m otrix poduct F AFjmA of Table 24 ( explcit

followl 4g of the formula F' F would Involve (1) recording

firs 'U1

of F1 the t samspeo of mtr hex F r s onn w

Obtai the. ear secio e5hclno'f4
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Paragraph a,, poit 6; A (z) m multiplication of
-,mtrices F 6__ and F A, see Section , Paagap a. it in

+ !',:.unnecessary to record the tranpose matrix FSWA the Sam

results may be obtained by multiplying each column of FirA7

;i by every column of YJi.A , The rove of the transpose matrix

1 1 itare Implied by their equivalents, the columns of FaM )
i" 1) First raw of F

a) Compute the sum of squares of the entries in the

first column in Fj A and enter the result in thc- I
first coll. of the first row of FjhArJzA .

b) Compute the sum of products between the entries In

the first column an in each other column of

and enter the result in the corresponding cell of
t the rirot row of F F . . For example: the sum

of- products between the entries in the first column
1 and second column of Fj A is entered in the first

row, second cell of F

e) Computo the sum of products between the entries in

firab column and in the E column of FjmA and enter

in the Ch cell of the first row of FAFJmA,

) Su= the ntlree In th.a flrst row of F',.F.A

(exclusive of the enti-j in the Ch cell) and enter

the total in the E cell of the first row of m FA .
This entry should agrs to within t 2 of the last

2) Second roy of F' F

' JmA4 JrA

Conpute the seocond row of F'j YA by using the

second column of j ' and. 2-ting preceeding

stepes a-d. The oum of sauar.-- of the second column

will be entered in the aecond. cal of the second row. L "

3) Remnining rowa of F',,Fj A

Co;mputo the roinIn rowo of F' ~' by using the

corrspondifng colwmns of F and repeating steps

a-d. Li each case, the eum of squpres of the

NX3
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?: 'column of Fa A rill be the diagonal. of YTMA.

: * ' Note that 71F~m~ s metric and once a row" if

i .- '' comted and chocked it my7 be copies into the

":corresponding column.

:. ];B) Compute thematrix product F 4BF 4 for study B foiloving

• ,the procedure as outlined in the proceeding steP for

' C) Solve for latent roots and vetors A V 6A and A MWB .B

I b; the method outlined in Section 3. The resulting matrices

Am^ ""a -AB  are given in Table 25.

- D) Discard principal axes With low diagonal entries In the j

~matrix. For study A discard the third column of the matrices

4, 'A and A"For Study B discarCL the fourth column 
of the

F ' matrices tApB and B

1 ) Compute the square root of each remaining diagonal and

N: record In the l-row.

2) Compute the reciprocal of theVeand enter the result in

the YF13row.
3 Chcthcopttosin I and 2 above by multiplying

each I/ Ff by the correap~onaing diagonal entry. The

product should approximate v/.ithin t- 2 of the last! * 
Adeci;l place carried.

4) Th "arie s n r iven in Table

A B.
26 aund contai b the/r8a diagonal ofriscomutd ac hekd tmyb cpnSit the -

E) Compute the matrix proluct Tp A
"  for stud 7 f#oi0

I Table 27. (See Section 5, Paragraph )

t) Eliminte the column IintApAcorresponding to the

- " principal axes discarded in D above. Since the t hird

column of Awsel~~ethe third column of A

N~C Solv Wor Flli.MFJMSmj

will likewise be elminated. The A M atrix will n

matrihve three rows ard two colthn.

) Multpl a eFor y ehentryin the first colum of b the
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dago..nl entry of the first column of 4 ar ecr

In the corresponding cell of T .(Table 27).

3) Multiply the Z entry in the first column of A; by the

.' -""diagonal entry of the first column of A and record In
" "the Ch row o" T A . Sum the entries in the first column of

TpA (exclusive of the Ch entry) and enter in Z cell. This

should agree with the Ch entry to within +2 of the last decimal

place carried.

.) Compute the entries in the second column of TrA by using the

[ entries in the second column of A, and the diagonal entry

of the second column of A7 . Follow the procedure outlined

In i2and 3abovq.
. "F) Compute the matrix product T. A 3  B for study B. (Table 27).

Follow procedure outlined in E above. The matrix A in

the example has four rove and three columns after the fourth

column has been-eliminated. Sl
c. Compute transformations to congruent factors

A) Compute the matrix 0 - ToA (F- jF B) TMp B (Saoe able z8).
mA JrA J

1) Compute tho matrix Fjn MA B

a) Compate the sum of products betwe'eit the first column of

FJMA and first column of F J1 (Table 23) and enter the result

I in the first cell of the first row of F" jF

b) Comput- the sum of products between each remaining column
of F... and the f irst column of FP.. . Enter the result in
the corresponding cell of the first column of

c) Campte the sum of products between the entries In the E
• ".. , :column of Fj and the first coltu of F.M . Unter result

in the Ch cell of the first column ofF~mAF" .

di) Sum the entries in the first col=,n of FyAF.[ (exclusive

I of the entry in the Ch cell) and enter the total in the E

cell of the first column of F' mAF This entry should agree

with the Ch entry to within +2 of the lash decimal carried.
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0) Seon coum of F,' * *

S., -+ - A in -

Copute the second column of 7F1 by using the

second column of 7 and repeating steps a-d.

f) Remaining column of rA7

I . Cmute the remaining columns of F7 AFAjM by using the

Icorresponding columns of F and repeating step. a-d.
2) Compute the matrix product T' (F FM)

mPA
Using the columns of T and the columns of (FmA? MB)

compute the matrix product according to the procedure outlined

in the proceeding step.

[ 3) Compute the matrix product
u" ' (M ) Tp (See Sectin Paragraph c.)*
G mpA JiA 43 'P

I.a) Compute the sum of' products between the entries in the first
row of the matrix TA (FmAJM) and the entries In the firt

column o,,,P B and record In the first cell of the first column
I'" of 0. For example:

+ (.1041) (.1871)

V b) Ccmpt the sum of products between the entries in the second

rowof pA F .j.48) ndthe f irst column of M.Enter the

result in the second cell of the first column of G. For example:

, -.19 - (..2?4)(.8z87) + (-.lO5)(.2814) + (.4702)(. 15)

+ !+ (-.42o)(.1871)
a) Compute the sum of prcducts between the E row of T' (F&.F 4B),mp A

MPBAby tho V'Art 0 o01n Of IV Enter the result in the Ch cell of

the ftrot column of G. Sum the entries in the first column (exclusive

* of the Ch cell) and enter the total in the E cell. This entry should

agree with the Ch entry to within t2 of the last dec mal place

:9 carried.

d) Compute the remaining columns of G by computing the sum of products
between each row of (F' AF3 4) and each remaining column of
bt nd echrwi %' thpA MA tr s

and entering the reault In the corresponding cell of G.
'1?
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"i i B) If the number or pincipal axes p waith sign'ificant Utrent roots D

• " : !,".:for Study A is less than or equal to the number of principl axes P

• with significant latent roots e, for Study 13, as Is true f'or Use

. -, examples. (For detailed procedure see following pxaragprapha D.)

S .ee Section 3'

3) Discard vectors with low Ole.

¥r

44 T I. ~4 44

.C ) If.c th nmr of prnidl xesp with significan latent roots 8A

" for Study A Is grete than the nuper of rincial axes P th fcu

. "~ ~ ~ ~ ~ ~ sgncn latent roots 8, for Study B qaln :I ilb ovda

14 i.. . .-~". ~ 4(4 - 4 4) Com.ut e GI' G9)

. O'ba atft vctos h ir roos of H A .  4n 02

I )) I the .uter oth priois of p viuth betwentfist an oscon

, r

3) Discard v ith oO

ArA0r

D) Sirce t o -r ofprinial tses p with sigificant latent root

foItuyAIsls tan the nmbr of rincial axes P ith ofWn
laten inroot for Studyy Bte 3:toi n ilb oyda

1) Computa t"ntl- putI -W1(alP9

) Cobanpu ltn vorsqandros oirtdof HE a n reodBn

) icr voto ith lnro prds btnntefrtW eo

D) Sice to nu-ba of 0rntiaer with oondicellno tenft- o

-o a
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---i.>-° o) Compute the sum of produote betveen the first and
. row of G and enter in the Ch cell of the first colum
of A*To check the computations, obtain the am qf the
first column of KA (exclusive of the Ch entry) and recordL
In the Z row. The Ch entry and Z entryahould agree wvthin
+2 of the last decimal place carried.

'2 d) Using the second row of G compute the econd column of

H as outlined in a to c above, the am of squares of the

second row being the diagonal of the second column of

2) Obtain the latent vectors And roots of RA by the procedure
outlined in Section 3. The resulting matrices are given in

Table 29 as mtrice ArA and
3) Compute the square root of the diagonal entries In 0- and record

r rin the FT row. Coute the reciprocal of i'and enter the result

in the row. Check the cowputations by multiplying each
by the corresponding diagonal entry. 1he pxoduct should approximate
. -to vithin +2 of the last decimal place.

4) The entries in the i/1d row are the diagoal elements of the matr ix

I given in Table 29.

) Compute the ratrix productt A TrpA ArA(Table t0)
Using the rcs of the matrix TmpA aru the columns of the matrix

6W A follow c omputational r ed u fo t p y n m ri s

outlined in Section 5 paragraph c.

6) Compute the matrix product TrB TBGArA 0
(Table 31)

a) Cmate the matrix product T,,BGl

(1) Compite the au, )f products between the first row of
TI TP]3 and first row of G and entuj the results in the

first cell of the first column of (TH1BG')
(2) Compute the aua of products ' etween the remaining

rows of' TP ahd the first row o G and enter theT141-3
result in the corresponding cell of the first column
of (TY-G')



N 

4

i3i ( Cpute the sum of products between the Z ro of

T :. and the row of Gan enter In the Ch raw
- nof the first column of (%a ')

.9;(4) Sum the e;,ttrles in the fiftt column (exclusive of the

*"Ch cell) and eter the result in E cell of the column.

12" bThis should agree with the Chi entry to within ft of the
last decimal place carried.

(5) Compute the remaining column of (TG') by usIng the

tows of T.and each of the remaining rowe of G and
Sentering the results in the columns of (TMG)

L , I corresponding to the rove of G.

b) Using the rove of the matrix (TWIG') and the colum of
the matrix A folow the cmputational procedure for

So t a rrmultiplying matrices outlined in Section5, Paragaph c,

to obtain the matrix (T.G) ArA
a) Using the rove of the matrix (TkGl) A rA compted Intb,

1
and the columns oIf the matri $ (Table 29) follow the

computational procedure for multiplying matrices octlnede in

Section 5, Paragraph c to obtain the matrix

7) Adjust columns of r A and r to congruent factors:
r 14rl

a) For Illustrative purposes the atrix .A al the matrix

uere copes In 'Table 32 frcm the results of previous
computations (Tables 30, 31)

b) For each study compute the sum of squareos for each column

and enter the results in the row desutat d E7 2e and E7 +

F) or -rrA prmd In-i -1inu i" ript" t'hs avoTrA ft& enter the

results in roy designated 3' rA + ETr For exaMple

" by A l'rB)

2 the avpragp between l.356101 and 1.67.,L665 is 1XL.6'3

d) Conrapute the square root of the valueis obtainaid in (c)

e) Compute tho reciprocal of the square roots compzted In (d)

Check the computations by multiplying each I/ -'(£T- 2 4.'rr

by the corresponding ( rA + Zr . The roduct Ghoul&



decma plc carid Thes recproal of th . -. am

-,4 arot athediagonal elemento ini of the le~xD shoni

Tiable 52)
tA ) Compute th. matrix Tmr D mA~ (Table 33)

g) Cocpt'te tbe matrix T1r .I 1 .(abe 5

AN d. Compute loadings on congruent factors (Table 3I4)

A) Corptthe matrix? a)JrA JiM Ak

Us Ing the rows of the matrix Ir.. (Table 25) andi the coluamm of
the matrix Tmr (Table 35) follow the computational procedure outlined

In Section 5, ft g hc.

B) Compute the matrix 7 3rB a jMBTMrB
I., ~~Using the rows of the matrix -~Tbe2)adthe columns of

TmrB (Table 33) follow the computational procedure outlined in

Section ~,Paragraph a.

4
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5 ,-.4 .48 .9

A 5

4' -:34. -. 23 .o8' .10 8

{ I .40 .12 -..26 .26 6
' .8 - 8

STUDY D

I £ II IEi Ia

1 .3 0.3 .28 .95 5
P2 .61 -. 1 .P4 .18 '.o 12
3 .59 .25 .o o i.2 8
4 .48 .27 . .06 1.16
5 .19 .09 ..6 -. 2 .46 6

, 6 .12 -. 3 .4 -.29 .23 6

I i Ill IiII I I l£
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.is FAC YAUC YO-I- R'.* .

t f2 -.1 -i .1 9 4

2*3 -2.3 e2 1

In ill IT C

1 .6 -. 16 .26 .201 .44 .4
3. 1 .46 -. 26 .2T.01 o91 .92

5 *17 4  .03 -2.3 -. 1 .42 .
6 .$1 -o31g -. 36 -. 5 - .35.1

£ 2.16 1.31 1.0 1.23



A N .. - r I

79.,

4,1 ,AK .. ,

1 .958,.., .o, .1.86 .w Am
it -.5239 .87 -.1268 -. 1636 -. 1636III o119 -a268 .loo .3923 .39e3

4'

I .9838 .2272 -1785 .2250 .6i,1 .6.-
II .2272 .262s .1862 o0951 .7708 .7708

..IV .2250 .0951 -. 1513 .29133 .36al .38a

.

X ,LIP



~OT A -

P-2 ..-3

II l5 .Q 26 -3 -. .' -

OOOT -M4

jP- P-2 p-S4 - P- -
1 84 .265 .74 .. 1073 - .69 .00 O 011 .30 9 .226 -78 -. 45 P- 01 . 55 .0030 .0019

111 .1 52 -. 9 1T .2130 - O.00 30 eo854 -. 007

SIZ 1.1 .9 .5753 L-7.1 4 38 .4566 9

-9 1%4910



P-3.

V...................... .. 97id

P-1 lp- -1 P-2 P-34

p- .7225 .431-078 A27 -2U .04 .%
pT..8 1395-128 111 .21 1.51222 82 11

-3& -.863 -. 95C -.T02 193

E 1."ft .5271.1 b



-:496 -: -:24 -:62

3171.2  .16 -. 20 .36

~ .. j.iC4 7

A.6537 .1785 -. okyr .9

T.

n;II m IVr

p-2 :244 .21C) :402 .420T

Cli .6351. 2306 .596W
.63% .2306 .9, -. 3266 *"j

I ~0 Tp(7Fapm)T

AP-2 P42 P-3

p 42 -.1972 -am *4890)

Ch ... 8 1.8 0

-7465 1.060530



p 'm .ww.*-Abwa"

taP .049

P- .71 70

p-2 .7470

A A

a.A 3

p/,r .7997 .1.8

A .99% I
1.1.0485
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Tabe 3

TWA q&I

A

1 .7-19 -.21.9

1,. --.- i,.:
/1h ..i -- Ii -881.

23. 45
•.'. 

.

--. ;'. -.- :

• -f



.1p 
- p -2.-

r *W 
-. 0091

*i-r5 -. 3eg

.05 g6

IV!~ 3.e5 1o5
Ch 2 h -80

ir -.229 -66

IV -.. 9288

.50 -1.0653

I .%tg -. 5233

1 .5m24 -. 81



A A1

TJ2.779 .2194 1 I9 43
11 -.2331 .ii58 n -.2e81 - 7CY-2O

111 -.8402e -1.i1 iii -M
IT -. 7257

Ic -301 -. 82z 8i -1.6891

ir .3j61o1 1.=o257 rr. 2 .TM 1.%

ft irA +Eifrfl).6G8t 1.533369

Itrr

A
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81A

IV .5713 -:75%

Ch 462 1.64

z .23 -16&
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ftb33

&M. 8WA Mary!

Vjr 7JWI&UA 7jr,las7M&S

A IA 3

FL A 02910 -.154 2 06 -2i .000-372
.318 -349 .

.21 . -1 3141
287 .2".07

fh I-a 10M144 18

-I* 1003IA 12



2. RoatonoAx In -the edfat eq j l.

used In, this section aso. On$ rotation or the as" In Mwb congruent

• " msce will be described. As Indicalt In Setio l Iy of tV8 bo of the

" 'report* the computtons sre of an Idntical nature sack rotation from

. ' one set of axes n the ongruent space to another set at sas. The form .

" given fn this ecion am be use for allt such rotattow of axes. In
"! the particular case Illustratedt and decribed, the r'otaiaon In from the

congruent factorsj, rj, to a rotated set, a. An Identicl mp utational

procedure would be used in rotating from factors, a, to a set of factors,

. Taols 35 given the transfonntton matrices for the desired
rotation. It is assume that the entries Int the rrs mats-Iz bays been

" . t ]derived from acme procedure for deciding where to rotate the axon. In

""" ) ' the present came those entries were determined gralhioaux from a plot

: .. .of the loadings on the two congrent factors In acords=* vIth utsual
[graphical rotation of axes procedures Involving oblique axes. In the

!:. :example tdscribed n ection 1, the entries In the r, matrit vere

$ = )' 2 p

. obtained from solvin ets of simutaneous liea equations. Other methods

(, "might be employed to obtain the entrees In r . The cowmtational procedure
to complete the rotation i es dencre In the followin at e1s.

i" '" a. Sum the columns of Ts
.sed tb. Comeute the matrix product T hrA rar by the procedure

. ."i..edecribead in Section T, Paragraph o. Rcord o the

~results in matrx T a . Table 33 ives matrix TarA

" for the example. To obtain the checks, =u:tiply the
one ': r. ros of Tr A by the columns of s ef Sus she column s

gi.n n hi"of cA (exclusive of the Ch. entries) and record In

the a-t- the E ra w. These sums should agree with this Ch entries
•o r-entfvath n + in the last decimal place car mte pao

Sc. Compute the matrix prouct TriB o the dame srocedure

Sroaa in step b, recordent the results in the mtrixh

'IB

VI

th~rsn aeteeetiswr dtrie rpial rmapo



a.- Compuate the in.,t of squaree or the etruee In each colugn
Sof mtrix T &and record the results in the ZT2 rw.

o. Coapute the ume of squares o the entrJes In fch colun

of atrix r a anM record the results in the Zr m  row.

f. 8u eaeh pair of corresponding entrien I the

Z. A 
.A XT.O. r!CZ dTvLLT t by 2, ad record in

te entri mah.- T +t irme

results In th44( r! + £T2) an& 1/4 W TL + P )

rove. A check on these oomputatione is to =mltiply each

i 1//J% aIsmA + 3 r ) entry %.- the coZiveporAL-

-R(E * + 7' ), the product should equal the

1 E +  72 ) wthin + In the last decimal place carried.

h. Using the +£2 ) for each column, multi-ply

the entries In matrices rre, T maI 7M' in that column and.

record the results in the correspondlng cells of the matrices

Trs, Tm , and T.." The Ch entry for each T matrix is obtained

by multiplyIag E entry by the ij-Jr 2 + T 2 ) for thensA H MOB

column. Sum each column in each T matrix (exclusive of the.

Ch entry) and enter results in the E row. These entries in

the 2: rovs should agree with the corresponding Ch entries

within ±2 in the last decimal place carrle d.

-a,] ~~~~~ ~olm oarx rcr.i heE' rw ee f theVX
1. Obtain the sum of squares of entriea in each column of the

c . Tns A matrix and record in the E2 raw. Flaeat for- the ',
nsA an. 2A

&sn matrix-

um. S each pair of corresponding entries in the r*t2 and

Et Brows-, divide each sam by 2, end recmru in

14 o . . " ' . --
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the *(t :2)rw These entr1m should eqa nt2m maA 'Ms

vithin t2 in the last decimal place cartred In the T matrices.

k. Compute the matrices of loadings of the tests on the rotated

factors, Fj A and FjeB (See Table 36). Obtain the matrix

products FJATme and FMET.. by te procedure given in

Section 5, Paragraph c. A computatioml short cut vhIch is

only slightly' Les accurate is to obtain the matrix products

n rA~rs and FMrB Tre

.... .. .. .. .. ....



Table

ra Ta
a b a b

A 1.00 .37 A 1.0276 .1469
B -.06 -1.oo B -. o617 -1.1267

Ch .9659 -.7098

E .94 -.63 z .9659 -.7o98

TisA " TrA4s  TmsA

a b ab

i .6182 .Amo20 I .635 .4529
ii -.2055 -.4344 il -. 23.12 -. h8,4
li -.6o7i .66u iii -.6238 .7449

Ch -. 1943 .6287 Ch -.1998 .708

r -.1944 .6287 E -. 1998 .7o84

3~A.7929q2 .787361 i1.2 .83t23.1 .999507m II

a b a b

S.4 .5813 I .4,68 .655o
II -. :31o .5003 II .1( .5637
Il .7CO6 .co58 11I .7897 . 17
IV -.53,18 .4470 IV -.5465 .s56
Ch .t,:4 5 .5354 Ch .56oo 1.7300
S.5450 1.5M E .56oo 1.7300

L"-1.101108 .783o65 E21.1,62691 1.000455

Ma4,B) OY71 .999W995

m! =B

' ; ,1sa23 ) .973160 .887532
m M

1. J7'4~.~) 1.027580 1.126720
2, m Ma



* Tab~a 3

O'I T A

7JxA - F7ni'l=

a b

1 -.0o6o .607
2 .o11 .4161.4031 .%02

.3089 .2964
.4267 -. o729
A.M .o684

Oh i.6131 1.8557

STUDY 3

a b

1 -. 0317 .5951
2 .0175 .4408
3660 .4z7
4 .36 .4257

*5 .39,C6 .0754
6 .4706 -. 0689

Ch i.6o6tA 1.9o62

E 1.6o63 1.9062

*1

- . . . .



3. Determination of fl FamCg!u!nt Axes

The congruent factors established b7 the preceeding procedures vIJ.

usually be fever than the total number of fNcto" In either study. A set of

non-oongruent axes is to be established in each study. The number of congrient

factors and non-congruent axes is to equal the total number of factors in the

study. In Study B of the pair of studies used In the body of this report there

was a total of 12 factors. A not of 5 congruent factors were determindi.' This

left 7 factors to be established as non-oongruent axes. The coputing procedure

for establishing the non-congruent factors follow.. These directions will be

illustrated by a fictitious example for which there is a total of five factors.

Table 37 gires the trensfortion TrA to three congruent iaotors. Two non-

ccnruent factors are to be established.

a. Prepare a work sheet like the one given In Table 58.

1) Sections A, B, and C are to have a row for each reference factor.

2) Sections A arA D are to be located vertically from each other and

are to have as many ccumnnn as tJz- are factors In the study. Head

the ool=ne 1, 2, 3, etc.

3) Sections B and X are to be located reerically from each other and

are to have ea =any columns as thare are factors. Zead the columns

1', 2., o', etc.

1) Section C is to have columns for the non-congruent axes. Head the

coiurw 4", 5", etc. The firet nu-2ber in this series in one gmater

than the nunber ocongyruent factoro. The last number in tho series

is the number of reference factors in the study.

5) Sectiona D and E are to be located horizcntally from each other and

are to have as many rows as there are factors in the study. Head the

rovs 1', Z, 3', etc.

6) Record unities in the dlagorzl cells, from upper left to lover right,

of Section r. Make dashos In all other cells of Section D.

a, u t.n. s, fii: -on upper iei to low r rl t,

and in all cello to the right of the dlagonal of Section E.

b. Copy the nitrix TmrA 'or TMrB) into the left portion of Soction A using

as ran coluzns as thore are congruent factors. The remaining columns will

be left blank for thi pres'nt. Enter prsviouely determinel column toti'ls

of T in the E row if SectIon A. Check the copying by su=Ing the colunna

of Seotion A, these sums should agree with the pruvious totals enter3d in
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the Zov.

t.. Obtain column 1' of Sectlon D.

1) Copy column 1 of Section A Into colmi 1' of Sectirs B. lnter the

aum of column 1 from the Z cell of column 1 into the Oh cell of

c,-Iumn I'. Sum the column l'(exclusilv of the Ch entry) and roorA

th) result In the E cell of column 1'. The entries in the Ch cell

and E cell of column 11 should agree.

2) Find the largest number, ignoring sign, in column 1' of Section B

(ex:lvsive of the Ch and E row entries). Underline this number and

make Jaahige in the remaining cells of the row of Section B in which

the number is located. This number Is the 1' pivot entry. 1he rew

is the I' pivot row. In the exampla the largest number in column 11

of Section B is .6612 in row Iv. This is the I' pivot entry and row

iv is the ' pivot zow.

d. Crpute column 2' of section B:

1) Crmpute the entry in Sectioa A row ' col.mn 1' by dividing 1he entry

of Section A col- 2 :n the 1' pivot row by the 1' pivot enry and

recrrdina the result with reverse siga In the Section I row 2' col, mn

1' cell. In the exmple, the entry of Section A column 2 in the 1'

pivot row Is .34-21. Division of .3421 by .6612, the 1' pivot entry,

yielda .5174 which is recorded in Section E row 2', column 1' with a

negative sign.

2) Compute each entry in SectIl= B column 2' by multiplying each row of

Sections A and B by Sections 'D and 9 row 2'. For the entry in Section

B row I column 2', multiply -;rI of Sction A and B by row 2 of

Section D and. 1. Only columns 2 of Section A and 1' of Section B

willl be involved since row Z' of Sections D and has entries in

these colt.ns. In the exozple, row I

(.4175)(.-000) + (.1393)(-.5174) - .3454.'

rote that the entry in the 1' pivot row ehoul. be tero anA need not

be recorded. If this entry in the 1' pivot row is not zero, the entry

In Section E row 2' colun ' Is iacorrect.

3) Compute product of E row of Sotiona A and B and row 2' of Sections

D and I ar record the result In the Ch cell of Section B column 2'.

--- ---- - ---------- -
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k) Sus the entries In Section B 2alwn' (exclusive of the Ch try)

and record the result In the Z rw. The Ch and E entries should

agree within *2 of the last docimal place oarried.

5) Select the larget entry, Ignoring sign, in Section B column 2'

(exclusive of Ch and 1 entries). This Is the 2' pivot entry and

is to be underlined. Make dashes in the remaining cells o Section

B !n the row to the right of 'be 2' pivot entry. The row containing

the 2' pivot entry is the 2' pivot row.

a. Comato column 3, of Section B:

1) Comw .ie the entry in Section Z rw 3' columm 1' by dividing the

entry of Section A chlumn 3 in Uts 1' pivot r.v by the 1' pivot

entry and recc-din the result wlth opposite sign in the ection

I row 3' column 1' cell. In the .xam=le, -. 7365 is the entry of

Section A column 3 in the I' plvat -ov (row iv which containa the

underlined 1' pivot entry in Section B column 1'). Then:

- (-.7365)/ .56lz- 1.1139.

2) Mul'Aply the 2' pivot row in Sections A and B by the portion of

Sections r) and E row 3' that haa been determined, divide the result

by the 2' plvot entry and recorl the result with reverse sign in the

Section E row 5' colmi 2' cell. For the exemple, multiplication of

Seotion A and B row iii (the 2' pivot row) by Santions C and D row

3', divielon by t-he 2' pivot entry., &nd reversal of aig yJelds:

[(.0,h3)(l.cool + (-.502)(.U )]/ .9481 (..5246)/ .948l
M .553.3.

Thi!i result is recorded I, Pectlon I ro 3' column 2'.

3) Muitirl each roa of Snctions A -ad B by row 3' of Sectiont D and I

and record the results in ootlcn 3 colt=. 3'. In the exarple,

multiplication of row i of Sectilms A and B by row 3' of Sections D
a,d Y Visio,.

(.357)(l.o'0oo) + (.l393)(l.IZ39) + (.3454)(.55.3) -. 7034

which is recorded in Secti%. B row I colma 3'. Note that the entries

in the 1' and 2' pivot rovs ahould be zero. If either of these entries

is not zero, the entrIen In Seotloa E row 5' are incorrect.
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) uJtipl the Z row Of Seotins A and by tba 3t row of Sections

D an I and record the roault in the Ch cell of Section B colum 3'.

5) Sun the entriee in Section B column 3' (exclusive of the Ch row)

and reooni the result in the Z roy. The Ch and ,Z entries should agrme

within t2 of the last declml place -,arrte4.

6) Seols:t the largest entry, ignoring sign, in Section B column 3'

(exclusive of Ch and E entries) . This is the 3# pivot entry and

i to be underlined. Make dashes in the r ining cells of Section

B in the row to the right of the 3' pivot entry. The row containing

the 3' pivot entry Is the 3' pivot row.

f. Compute remaining columns of Section B corresponding to columns of Section

A containing congruont factors. In the present example there were three

congruent factors ea d the computations of columns of Section B will stop,

therefore, with column 3'. If the natrix TnrA had seven columns, the

computations would continue through column 7' of Section B. (During the

process of detormining non-oongruent azes, correspondind coluami of Section

B will be determined. In the eLample the non-oongruent factor, later

recorded in colunr 4 of Section A, vap used in obtalning column 4' of

Section B. These steps are subsequent to the present step.) Follow the

procedure outlined In the foregoing step a. Por bach additional colum

added to Section B there is an additional entry in the correnponding row

of Caction X. Otep e3 gives the general procedure for determining the

entries in the Section 9 row.

g. Dotormine the first non-oon4uent axis.

1) Record unity in t~h first column of Section 0 in some row that is

not a pivot row. In the ax=ipe column 1' 1"d not b-en rvocxted in

CEcti-n B &.nd ra i wae not a p!vot "rov. Unity .ts rooorded in row I

or S3 ction B cclu 4". (Tia Y'cW selected 19 Ukelv to become the next

givot row "ehon o h.lc.ne return to Section B.)

2) '?ccr4 zerce ln the firat coluim of Section C in other rcve tat are

p pivot Prs. in the exmple, .0000 was record4d in row i of

Se,-tlon C cclun 4".

3) 1.1itliply the first col~iaa of Section C(uing thoee entries already

recorded) by the Inst coluan recc-lad in Sectioa B, difide the

roe lr sum or products by the pivot antry In the ool'.u of Section

B, dad rucocrd with rmvvri s r, in the corresor, .r, pivot rM in

------- - --- ----- ---- --- -- ----- - - - --- - - ---.-.------- ...
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Seotion C first coli . In the examplet

a) Seotion C oolum 40 was multiplied by Seotion D colmn 5,

(.7o3k)(L.O000) (.4984)(.000) - 7034.
b) This result was divided by the 3' pivot entry:

.703/(-l.o65) = .65

a) The sign of the result was chan4 and the .6854 , * recorded

in Section C colva 4" in row vp the 3' pivot rev.

4) Multiply the first ooltm of Section C by the next to last oolumn recorded
in Section B, divide the resulting sum of produuts by the pivot entry

in the column of Seotio= 3, and reoord the result vith oposite sign

in the pivot row in the flrst oolumn of Section C. In the example,

coluni 4" of Seotim C was multiplied by column 2' of Section B.

The result vso diride by the 2'pivot entry (in row iii) and this
result wds reoorded with o.-posite slip in ecticn 0 column 4" row

iii, the z? pivot rov.

-. 51l)(.OCC) + (-.6138)(.oWo) + (-.11k)(.6854)] /.9481
S-(.063.2644)/.9481- -.o669

5) Continue the proc~ss described In steps 3 and 4 working baok one

co3 .nn of Section B each time and recording the result in the pivot

rx-d in the fIret column of Section C. All entries In the colum of 1
Soctlon C will then be dqteermIned.

6) Sun t!.- first coltunu in Sectica C and record the result in the Z

row.*

7) Gbtacn the su of equares of the entrlea in the fl.-t column of

StiAUn C (excluseive of the Z entr7) and r'.cord the rsult in the I
LProw.

8) Obfa,.n th, eqmre root of the entrj in the c2 row, iecording in

the i 'r , a.d the recprocal of the square root, recording

In t .3 / - W. Tb ee cozilutations ray be obeclmd by rultiplyin"

the i/V/>2 ent'q Ivy the Zca ontry, the reault shcti:iA agee with the I
iT- entr7 vilthin *2 of tho If;-it deoln1. i)1acc entrieS3,

9) ,.i., 'h entry In tho colzin of Section C bj tia I/ entry

r4 acv*-A in the co coih.n. of 3ectlon A. Praltn fror4

l, :.n '," o.f Zon C w.. re.'. in ooiuwm 4 of Se,.Llon A. To

v;.'k rx a r. -, ,It.-' Z , in the CIunV C Of Soction C
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bthe Aih and record in the Ch row of the Section A column.
Sum the entr1es in the Section A column (exolusive of the Ch

entry) a" r oord In the Z row, The Ch and 1 entries should

are. within *2 of the last decimal place carried.

10) Obtain the &m of squares of the etries in the new Section A

colum and record the result in the Zt. row. This entry should
equal unity within !I1 in the last dectmal place carried.

11) Check that the product between the new column of Seotion A and

and eaoh preoeeding column of Section A Is zero within +l of the

laut decimal place carried.

h. Compute a new coln of Section B for the column added to Section A.

Follow the procedur* outlined in step e. Also see coments on procedure

In Section f.

i. Comyute a new colm of Section C for the next non-congruent axis. Bepeat

step g intorpretIng the diroctions to indicate the second non-congruent
azie wereror the first no-congrunt axis Iso mentioned.

R, eat ste h an4 I fcr ir-bssu-nt non-congrent axon until &3-1 columns of

Section A are ccrvleted. The coliw.a added to Section A contain the direction

cosines of the aon-oanaruan axes. These colume may be %opled into a

A,,,A(or A 3M) matrix such as is giren in Table 6.
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Table 37

TRANVORMTION TO CONGRUENT "

PACTM FOR A FICT".,OUS -AM

*. *- . *.

TWA
'.. . -.. ... .

Reference Cont Factors
Factors A B C0

1 .1393 .4175 .3571
11 .14871 -. 5618 e2954

-.5023 .6e& .0-49
Iv .6612 .3421 -.7365-.213 -.52.18 -.5 6n

E.5720 .56142 -.Sioe

• "..-. "

"O.'7 '

', -' ,'.

• .. .% .

-j. -'.~ ,-
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I. Determint on of latent Root. and Vectors

Given a saypetric matrix AOp such as in Table 39, it is

Ieaire to compute a matrix of latent vecttrs and the corresponding

'a tent root&. The matrix k '02 in Tabl 45 is a close approximation

or the matrix of latent vectors for the exauple. The diagonal entries

In atrix A2 of Table 3 are close approximatlona to the latent root-

for the example. The method to be described is an adaptation of the

eucceasive rotations method developd by Trmen L. el-ley (14).

Each rotation transforms the axes to closer approximtions to the

latent notors, vith any desirea dgoree of precision being obtaine

by taking more rotations. It may be necesseuy to carry more decimal

placei in later rotations to realize the pottntial precision. In the

exaple oly two rotations were computed to obtain a fair degree of

;recision. M4et uealient feLaWres of the pocedure are Illustrated

hmover.

Tables 40 ani 41 contain the computations for the first

rotation an. Tables 4Z and 43 contain the courotetorns )%r the second

rotation. Fach rotation starts from an A =trIx ead prrAaces a revised

A a-trix. Botatlo 1 atarted frc the A, .trLix of Table 39 and produced.

the A1 matrix in the lover right of Table 4'. Rotation 2 started from the

A Iateci and prwii.:cei the Aa matrix in the lower right of Table 45. Note

thast each of the~e A zntrices is s nrxetric (eanh row of the mtrizx has
Idnstat ertr~c with those of the c pa. tu column). The largest

ontrics are In the diagal frcm upper le.-t t lov'r :'igit and fron

rc-jt-on to rlt-attn tlh e 3ff-d'ascr,.l entrleA are booo'tig szillnr. The

.toAti o.z:r- 'hn the off -dihgoral entri becomo zero. Tho diai:ml

entries -re tlrar the latorit rcote. 'ach r -ztlon b"I a mzaxriz relatlng

the A rntrIr '-x 4ce& by that rotw'.ion to .6 orig-nl A. zatrix. IT*

A0 , m.rix for the fr mt rotation 13 in t -r;,r loft cf Table 41,

'Th AO I ri for rtton 2 is In t'ia u~er left of Table 45. When

-tf dff1--- 1 entries in the A matrix ame zero, the A rttrix contains

thi latenit rec hers.

hE folcvln!g d.iroilons, omnl -ja rotation vill be covered

aipcltty. it ii er: cted that &9s .- y z, .h rotatlona will ba txken

:, riuary to - "p.:!- , fo. orty rtcular aoltIon.
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a. Por each rotation proeare a et of work sheets. Tables 40 and 2

ilustrte the set up for Work Sheet 1, Tables 1 and 3 illustrate

the set up for Work Sheet 2. lach matrix in these tork sheets Is to

be the a size as the matrix AO.

b. Obtata the entries in the B amd C matrices from the preoeedlug A matrix,

7or Rotation 1 the A matrix is used, for Rotation 2 the A1 matrix is used,
*tc.

1) YiL the largest off-diagonal entry irrespective of algn below the

d4Iaczal of the preoeedin A matrix. In Rotation I of the exaomple

the largest entry, ignoring silp, below the diagonal of matrix A0

In Table 39 Is .58 in raw 5 and column 2.

a) Subtract the diagonal entry for the row of the selected off-
diagonal entry fr= the diagonal for the column of the selected

off-diagonal entry. For th, eismples the diagonal of row 5 is

1.55, the diagonal of column 2 in 1.21, ubtraoting 1.55 from 1.21

yields -. 34.

S) Divide the difference in diagonal entries by the off-diagonal entry,

ignoring the sig of the off-diagonal entry. Record the result in

the cell of matrix B corres r~ing to -Lhe selected off-diagonal
entry. Note that the aiga of the result will depend only ca the

cigc of the difference between the diag nal entries; thus, if the

diag.onal entry nearer the upA-r left is larger than the diagonal

entry toird the lover right, the sign is plus; if the reverse is

tr.le, th t i& of the two 4.agonal enttie3, the secor dlnonai entry

from upper left to inver right is the larger, the sgn is neEptive.

For the e~aple:

vhich is recorled in the matrix B01 ros 5 and column 2 cell.

The sign ia minus because the second d lagnl entry cf matrix

A. is lesR than tbz fifth diagonal entry. The entry in row S

and colimtn 1 of matrix Bilutrmtea the c,.se when the entry
is pocitive. The firct d~nhcnal entry of zrAtrL. AO is larger

than th6 thijrd diaorn_3. entr7 of rntria A. The ala of the

-. 10 in rov 3 ar. colJ ui 1 of matrix A0 i ignored.
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7rn Table 44 find the o value corresponding to the b entry

in the B matrix. The sit., of the entry in the B matrix i
ignored in finding the corresponding c value. For the example:
the .59 from row v and column 2 of matrix 901 is in the interval

of b values of Table 44 of .57- to.- 59 for which the corresponding

0 value in f5
In case the entry in the D matrix in plus) record the a value

fcunA in step a in the corresponding off-diagonal cell of the

matrix C with the sip of the corresporAing entry in the A matrix.

Record unities in the correspon.ding diagonal calls of the C matrix ' %I.
and cor the off-diagonal entry reversing sign, into the nymmetrical

ceil abore the dlp _nal. For an example note the entries in rove

1 and 3 and columns l and 3 of matrix C in Table 40.01
In case the entry in the B matrix is minus, record the a value

in the two corresponding diagonal cells of the matrix C. Record

unity in the corresponding off-diagonal cell of matrix C and

assign It the sawe sign as the off-diagonal entry in matrix A,

&-A rscord unity with the opposite sign in the symmetrio cell

above the diagonal of matrix C. This step was followed for the

entries in rows 2 and 5 and columns 2 and 5 of the matrix CO1

in Table kO.

If the off-diagonal entry in a C matrix is .30 or larger:

Igqoring sfgn, the rows and colu=m3 of the entry are to be

excluied frou further consideration in determlning other

eutries in the 3 and C matrices. This is true for the k'
exarple vhere the largest off-diagonal entry in matrix A0

v-s In " I and col%=n 2 which yielded off-diagonal entries

of unity in mtrix C 01 The rows and columns 2 and 5
vere then excluded from the following steps in determining

other eutries in matrix C0 1 . In the case of the second
rotation none of the off-diagonal entries in matrix C

of %able 42 vere .30 or larger and no rows or columns

wac- l roz further consid.r-tion in determinirg C
other entries in the C0 matrix. As a consequence -.

eeveral off-da-gonal entries appear in each column of .-. >

,ratrix C12. Vhenever thie C matrix off-diagonal entry is

,30 or larger, only this off-diagonal entry should appear

in its row or colun= of ratrix C.

. .... ,..



2) Seleot the next to the highest off-dixal entry, irrespoctive of

&ign, below the diagonal of the A matrix. Do not consider any entry

in a roy or column that has been excluded fron further considerstion

Inate 1-f. In the example, in Rotation I rows 2 and 5 and columns

2 and 5 were excluded from further consideration In step 1-f. The

next highest off-diagonal, Irrespective of siap in matrix O of

Table 39 in the rows and columns 1,3 and 4 remaining is -. 10 in

r 3 and column 1. The -. 11 in row 5 and column 3 is not to be

considered. When the off-diagonal entry has been selected, follow

the procedure of atep. 1-a to 1-f in obtaining the entry in matrix C.

In Rotation 2, the hiaghet off-diagonal entry irruspective of sign

of atrix A1 of Table 41 wae -. 10 in row 4 column 1. This yielded

an off-dlagonal matrix C1 , of Table 32, entry of -. 12. Since this

entry was not large enough, ignoring aiga, to cause the exclusion of

rows an& columns 1 and 4, the entry of .09 in row 4 an column 2 of

matrix A1 could be selected second. This yielded an entry of .11 in

rw 14 and column 2 of matrix C... The selection of entries in the A

matrix, from high to low, and subsequent determination of entries in the

C matrix is to continue until there are no sore off-diagnal enta ieu

in ratrix A from which to select.

A special case exists when a C matrix entry of .30 or greater,

irreepeotlve of sign, occurs on'later selection of off-diagonal

entriers in matrix A and there is already an entry in the row or

colnn of this entry in the C matrix. In this case,thl entry Is

not to be recorded and the rows and columns In -which it is located

ear to be excludedi from further consideration in the selection of

iddltional entries in matrix A.

c. Comnute the entries in the T matrix. In Rotation 1, Table.40, matrix TO1

is identlacl with matrix C which Is, therefore, to be copied. In all

subsequent rotations the T matrix is to be obtalned by multiplioati n of

of the preceedingAmtrix by the present C'matrix (see Section 5, paragraph

c for the procedure in multIpllcttl.n of me!tricen). In Rotation 2, A01

for Rotation 1 in Table 41 is multiplied by matrix C1, in Table 42 to

produce catrix T02 of Table 42. In obtaining the Ch row of matrix T,

zltiply the E row of the preceding, A matrix by the colume of the C matrix.



Betsitim 1, the sum or tb colums of the C mtrix ar* to be

ordke la the Ch row of mtrix To,.) The sum of the colums of ,-j

T mtrlz (exclusive of the CO entries) are to be recorded In

EZ row A should agree with the entries In the Ch rov witbin *2

the l"t decimal place carried. After the matrix T has been

, the rows are to be sumed and the results entered in tLe

E colum. The sm can be checktd by sumin both the Z row and the

r colum. These two sums should agree.

osput. the Z matrix. For an example see Table 42.

1) Obtain the fir'. column of the 2 matrix.-I

a) Oubtain the sum of squares of the entrlee in the first column

of matrix T and record ihe result -n the first row anrd first

column of matrix 1.

b) Obtain the sum of products between the entries in the first

column and second column of matrix T and record the result in

the second row and first column of matrix 1.

c) Obtain the sum of products between the entries in the first

column and each of the remaining colutos of Matrix T &Mn record

the results in the cozTe pding rows and column 1 of matrix 3. U
4) Obtain the aum of products between the entries in the first

column and the E column of matrix T and record the result in the

Ch row and column I of matrix 1.

a) Sim the entries(excluuive of the Ch entry) in the first column

of matrix S w4 recorl the result in the E row ar4 column 1. The

Ch entry wid the E entry should agee within *2 in the last

decimal place carried.

f) When the entries in the first column of matrix I haye been

checked in step e. these entries my be copied into the first

row of watrix X.

2) Ob-tain each of the othor columns of the matri E by finding the

ana of prcducta between entries in the correeponding column and

each of the other coluns of matrix T. The cum of squares of tnLries

in eesh column of witrix T is to be recorded In the correspondin'.

dnulcell of wAtrix E. I
}5) DcL'ule each dlagorAl ontry In matrix Z and record the result in the

c0:.ZSP)dlng c0.11 of column 20. To check this work obtain tho sum of

te diagomal entries, double this sum and record in the Ch cell of %
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column 2e~j Then sum the entries In the column 2sr and record
the result in the E cell of the ob=. The entries in the Ch

call and E cell should apres.

4 ) Obtain the squ are root of each diagonl entry In matrix I and record
the resul s In the mn t; rt

) O runtin the cals of the square roots determined in stae 4 a

record in the 1/V/ekk row. tiply each d iagonal entry b the

correspondin g This product should ase ith the-

within *2 in the last decimal p Ice carried.

.. Obtain the 7 matrix. For an example tee Table 42.

1) Copy the 1IV ekk entries Into the diagonptl cells of matrl% F.
2) Multiply each off-diagonal entry in matrix I by the 1/4-* at

the bottom of the column containing the entry, divide this product

by the 2ejj at the right of the row containing the entry, and record

the result with reverse sip in the correspoiing cell of matrix P.

For example, the entr in row 2 and column 1 of the matrix E. in Table

42 is multiplied 'y the 1 entry at the bottom of column 1:

-.ono x .97M - - .0oo ,

this result is dividel by the 2e j in row 2:

.0698o/2.214o -. o4,
which is recorded with opposite sign in row 2 column 1 of the

matrix

3) Obtain each entry In the Ch column by:

a) Multiplyi rg by 3 the q,-ar& root of the diagni.d entry in

the corresponding row of matrix I (this square root can be

found in the k row in the column of the diaeonal entry),

b) Subtracting from the product of step a, the sum of products

between the entries in the row of matrix I and the entries in

in the i1ji- row (including the diagonal entry), and
c) 144 'lrg this reni) t by the ?e for the row.

The computAtlor.n for the firat Ch entry in matrix F. in Table

42 are dlerived from the first row of matrix T.

3 1.0282 - [{l.o571)(.9726 + (.411)(9505)
.+ (.=3)(9621) + (-.o20S)(,7'5)

+ (.0080) (.9928)]- 2.o496696

*1
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2.o4966926/2.J 1i42 .969
(The subtractions in step b may be accomplished by adding tho
products with the signs of the entries in the F matrix row reverfed.)

4) I the entries (exclusive of the Ch entry) in each row of the matrix F
and record the result In the E column. The Ch entry and the E entry

should agree within -12 in the last decimal place carried.

f. Caspate the A matrix by multiplying the T matrix by the F matrix. (See

Sect!on 5, paragraph a for the procedure in multiplication of matrices.) In

the exemple matricee T02 and F2 are in Table 42. Their product is matrix AO
of TLble 45. The columns of the Amatrix are check;i by multiplying the E row

matrix T by matrix F and recording the results in the Ch row of the I matrix.

The entries (exlusive of the Oh row entries) in the columns of theiAmtrix are

to be e*jmed and the results entered MA the E row. The Ch entries and the Z

entries should agree within 12 in the last decimal place carried. Sum the rowe

of the Amatrix and enter the results in the E column.

g." CcoFts the entries in the A'Amatrix following the procedure given in step

d for the E mat,,ix. The diagonal entries in the A 'A matrix should be unity

within *2 In the last decimal place carried in the Amatrix and, the off-diagonal

entries should be zero with this same degree of accuracy.

h- Computo the matrix product AO A by multiplying the A0 matrix by theA atrix.

(See S--tion 5, paragraph c for the procedure in mtiplication of matrices.)

Check the rows of the product mat-ix AoA by miltiplying each row of the matrix
A0 by t2he E column of the Amatrix and recording the results in the Ch column.

Sum th entries (exclusive of the Ch entry) n each row of the pro=unt matrix

AO As an record the result In the E column. The Ch and E entries shuvald agree

wlla -2 of the last decimal place carried.

1. Ccmputa the new A matrix.

1) Mutiply each column of the prodct matrix AoA by the first column in the &

zatrx and record the result in the cell of the ftrst row of A correspondig

to .ha column of A0. Alio n1I, ply the E column of A- by the first column

of the A mvtrix and record the result in the first row, Ch coluamn of matrix

A. Sum the entries (exclusive of the Ch entry) in the first row of the

=ew A matrix and record the reault in the Z column. The Ch entry end the

Z entry should agree to within f2 of the last decimal place carried.



z) Compute the reminig roI of the nV A matrix using the

oorresponding column* of the Amatrix and following the procedur6

described In stop 1. The A matrix should be smmetrio If enough

deot=al places were carried in the product matrix A. A. It would

be preferrable to ctrry suffiolent decimal places in this matrix

product to ensurv that the matrix A wvLld be symetric. Then, when.

one ro of matrix A has been ccputead and checked, the entries in

that row may be copied into the oorresponding column.

. ..
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Thble 39

Ali ILJSTRATIVE ,3m=R!cAL
HATRLX

AO

1 2 I t

1 1.99 -. 02 -. 10 -. 08 .00

2 -. 02 1.21 .03 .op .58
3 -.10 .01 1.69 .08 -.11

4 -. 08 .02 .08 1.20 .10

5 .00 .58 -. 11 .10 1.55

* 
?
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5. Notes on Matrix Computations

The coputing procedures in the foregoing sections have been state&

in terms of a few standard matrix computations described in this section. Familiarity

vith the following matrix computational methods viil be of 4istinot assistance in

understanding the directions in the first four sections.

a. Definitions:

1) A row of numbers is called a row vector.

Example:
3 2 6 8

2) A column of numbers is called a column vector.

Example:

3

2

6
8

3) A rectangalar table of numbere Is called a matrix.

Example:

7211

8 74? 5

14) A square matrix with entries In the diagonal from upper

.left to lower right and. zeros elsewhere is called a

d1aFonal matrIx.

Fxmple:

5 0 0 0

0 14 0 0
S0 0 8 0
t0 0 0 9

5) A single letter may be used to designate an entire vector or

matrix.

EYAmplea:

Note that the following examples are different than the

proceeding excrples. The terms vector and matrix can be

-applied to any eat of numbers arranged as a row, a column,

and a table.
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1 w) vector A equals:

7 5 9
2) Column vector B equals:

1

6

3) Matrix C equals:
8

3 7
S 8

6) The transpose of a matrix is the matrix with the rows of the

original matrix written as columns (or original columns written

as rows which gives the sane result). The transpose is deeignate4

by the letter for the original matrix primed.

rhample:

The transpose of matrix C is C' and is:

8 7 8

b. Multtplication of vectors.

Consider the following two row vectors

Vector A 7 5 9
Vector E 8 3 2

Multiply the first number of vecator A by the first number of

vector 3:

7x8- 56
Also find the product of the second entres in the two vectors:

5 x3 =15
Wmilarly find the products of each piar of "c, rreeponding entries

in the two vectors. The third terms in the example give:

9 x2 -18

Sum the products:.

56 + 15 + 18 - 89.

This sum is the result from multiplying the two vectors. Thus:

.- 7

- . ''
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Two vectors are multiplied by eurming products of

correepordi:g-entrios in the two vectors.

Consider a second e. ,.ple; multiplication of row vector A and

column vector B.

Vector A 7 5 9

Vector B 1

6
14

These two vectors are multiplied as follows:

7ll 7

5 x 6 3o

9x 4 36

Total i5

The resilt of multiplving the two vectorls the number 73.

Note: Two iectors must have the same number of entries if

they are to be multiplied.

c. Multiplication nf Matrices:

Consider the following set of three matrices.

Matrix C Matrix F Total

5 8 4 6 3 5 18

3 7 1 9 2 7 19

T'otal 10

Product MatrLx C7 Total

28 102 51 81. 242Z

19 81 23 614 187

16 84 22 66 1W

Total 65 267 76 211 617

Consider the first row of matrix& as a row vector. Consider

the first column of matrix F as a column vector.

Multiplication of these vectors yields:

5 4 20
8z1= 8
Total

* a! -8, is recorded in the first row and first column of the

.', teix CF.
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!ultiplication of the secorL ro of matrix C by the. first eoh12

of matrix liedet

71. 7
Total ir

19 is recorded in the soccr row and first column of the product

matrix CF.

Similarly, the 16 In the third row and first column of

product matrix CF results frM multiplying the third row of

matrix C by the first colum of matrix F.

~8x1-8
Trotal i:6-

When the row of coltn totals of matrix C te multiplied

by the first column of mstrix F the result is the total of the

first column of the product ratrix CF.

io x 4 - 40

23 x 1 w 23
total

This computation of the total of the column of the product matrix

is an efficient check on the computation of the entries in the

column.

The secorA colmn of t1e product =atrlx a is obtained by

multiplying the rows of =trix C by the second column of the

matrix F.

Firt row, scod colur -hird row, second column

5xE 30 2x6-2I

83x9-?g
Total SWTotal 102

Second row, second column Total raw, second colmn

10 X6 - 60
ex6 1825X9s0

7 x 9- 63 Total 0.7
Total 8



The third column of the product matrix C is obtained

slmilarly by rultlplyin the rows of matrix I by the third column of

matrix F. For the fourth column of the product matrix C, the fourth

column of matrix Z Is used. A check on the totals of the rove of the

product matrix CF Is obtained by multiplying the rows of matrix C by

the column of totals of the roew of matrix L for example:

9 x 18 - 90

8 x 19 -. 2
Total 242

Multiplication of the row of totals of columns in

matrix C by the mtr' F column of totals of rove yields the

grand total of all entries in the product matrix CF.

10 x 18 - 180
2x 19 - 437

Total

Two vatrlrzas are waltililod by mutpZMa vcosec
row of the firnt natrix"b y each colimu of the secorA matrix and

r oo. the r-culta In a product natrix with a row for each row

of tho first =t 'ix and a column for each column of the second

mAtrix.

Note that, for two matrices to be mutiplied, the aseond matrix

vmst have the same number of rows as the first matrix bas number

of colume.

Notap also, that the order of the rAtricos makea a differenme in

the matrix product. With square ratrices care must be tairn to

consider the matrlco3 in the proper order. ultiplicatin of

matrices in the wrong order will produce erroveous results.

i7


